Задача
По координатам двух точек, которые вводит пользователь, определить уравнение прямой, проходящей через эти точки.
Решение
Алгоритм решения задачи:
Общий вид уравнения прямой имеет вид y = kx + b. Чтобы найти уравнение для конкретной прямой, необходимо вычислить коэффициенты k и b. Сделать это можно, если известны координаты двух точек, лежащих на этой прямой. В этом случае решается система уравнений:
| y1 = kx1 + b
| y2 = kx2 + b
b = y2 — kx2
y1 = kx1 + y2 — kx2
k = (y1 — y2) / (x1 — x2)
b = y2 — k*x2
По введенным пользователем координатам двух точек вывести уравнение прямой, проходящей через эти точки.
Общее уравнение прямой имеет вид y = kx + b . Для какой-то конкретной прямой в уравнении коэффициенты k и b заменяются на числа, например, y = 4x — 2 . Задача сводится именно к нахождению этих коэффициентов.
Так как координаты точки это значения x и y , то мы имеем два уравнения. Пусть, например, координаты точки А(3;2), а координаты B(-1;-1). Получаем уравнения:
2 = k*3 + b,
-1 = k*(-1) + b.
Решая полученную систему уравнений находим значения k и b :
b = 2 — 3k
-1 = -k + 2 — 3k
4k = 3
k = 3/4 = 0.75
b = 2 — 3 * 0.75 = 2 — 2.25 = -0.25
Таким образом, получается уравнение конкретной прямой, проходящей через указанные точки: y = 0.75x — 0.25.
Алгоритм решения данной задаче на языке программирования будет таков:
- Получить значения координат первой точки и присвоить их переменным, например x1 и y1 .
- Получить значения координат ( x2, y2 ) второй точки.
- Вычислить значение k по формуле k = (y1 — y2) / (x1 — x2) .
- Вычислить значение b по формуле b = y2 — k * x2 .
- Вывести на экран полученное уравнение.
var
x1 , y1 , x2 , y2 : real ;
k , b : real ;
begin
write ( ‘A(x1;y1): ‘ ) ; readln ( x1 , y1 ) ;
write ( ‘B(x2;y2): ‘ ) ; readln ( x2 , y2 ) ;
k : = ( y1 — y2 ) / ( x1 — x2 ) ;
b : = y2 — k * x2 ;
writeln ( ‘y = ‘ , k : 0 : 2 , ‘x + ‘ , b : 0 : 2 ) ;
end .
Неверно введено число.
Точки должны быть разными.
Уравнение прямой по двум точкам
Введите координаты точек:
Количество знаков после разделителя дроби в числах:
Общее уравнение прямой:
Теория
Уравнение прямой, проходящей через две заданные точки (x1,y1) и (x2,y2), имеет вид:
или в общем виде
Т.е. получили общее уравнение прямой линии на плоскости в декартовых координатах: