- Калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
- Инструкция использования калькулятора для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
- Ввод данных в калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
- Дополнительные возможности калькулятора вычисления объема пирамиды (объема тетраэдра) построенной на векторах
- Теория. Объем пирамиды (объем тетраэдра) построенной на векторах
Объём параллелепипеда, построенного на трех векторах
где координаты векторов в соответствии с рисунком
вычисляются следующим образом
Знак плюс берется, когда определитель третьего порядка положителен, а минус наоборот – знак отрицателен.
Найти объём параллелепипеда, построенного на векторах a1=<2;3;2>, a2= <-1;-4;3>и a3=
$ = pm left( <2cdotleft( <left( < — 4>
ight)cdot2 — 1cdot3>
ight) — 3left( <left( < — 1>
ight)cdot2 — 3cdot3>
ight) + 2left( <left( < — 1>
ight)cdot1 — 3cdotleft( < — 4>
ight)>
ight)>
ight) = -33$
Так как определитель отрицателен, берем перед ним знак « − ».
Тогда объём параллелепипеда построенного на векторах равен V=33
2) "Уравнение плоскости, заданной двумя векторами".
(Интернет станет ругаться таинственными словами "компланарность" и "неколлинеарность".)
Выучить и не страшась в бой, с молодецким "гиканьем" и с карандашом наперевес.
3) "Расстояние от точки до плоскости. Метод координат. "
(Интернет предложит примеры всякие.)
Ознакомиться, хихикнуть и сделать всё по-своим данным.
4) Чего-то там на чего-то здесь перемножить.
5) Для чтобы научиться, — с криком "УРА-А-А! " решить истчо 5-6 подобных примеров.
6) Пойти в свою бурсу и заткнуть всех своих за пояс.
Этот онлайн калькулятор позволит вам очень просто найти объем пирамиды или объем тетраэдра построенных на векторах.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление объема пирамиды построенной на векторах и закрепить пройденый материал.
Калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
Выберите каким образом задается пирамида (тетраэдр):
Введите значения векторов: Введите координаты вершин пирамиды:
Инструкция использования калькулятора для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
Ввод данных в калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора вычисления объема пирамиды (объема тетраэдра) построенной на векторах
- Между полями для ввода можно перемещаться нажимая клавиши "влево" и "вправо" на клавиатуре.
Теория. Объем пирамиды (объем тетраэдра) построенной на векторах
Определение Объем пирамиды (объем тетраэдра) построенной на векторах a , b и c равен шестой части модуля смешанного произведения векторов составляющих пирамиду:
V = | 1 | | a ·[ b × c ]| |
6 |
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.