Содержание
3.1. Полярные координаты
На плоскости часто применяется полярная система координат. Она определена, если задана точка O, называемая полюсом, и исходящий из полюса луч (для нас это ось Ox) – полярная ось. Положение точки M фиксируется двумя числами: радиусом (или радиус-вектором)
и углом φ между полярной осью и вектором
. Угол φ называется полярным углом; измеряется в радианах и отсчитывается от полярной оси против часовой стрелки.
Положение точки в полярной системе координат задается упорядоченной парой чисел (r; φ). У полюса r = 0, а φ не определено. Для всех остальных точек r > 0, а φ определено с точностью до слагаемого кратного 2π. При этом парам чисел (r; φ) и (r1; φ1) сопоставляется одна и та же точка, если .
Для прямоугольной системы координат xOy декартовы координаты точки легко выражаются через ее полярные координаты следующим образом:
3.2. Геометрическая интерпретация комплексного числа
Рассмотрим на плоскости декартову прямоугольную систему координат xOy.
Любому комплексному числу z=(a, b) ставится в соответствие точка плоскости с координатами (x, y), где координата x = a, т.е. действительной части комплексного числа, а координата y = bi – мнимой части.
Плоскость, точками которой являются комплексные числа – комплексная плоскость.
На рисунке комплексному числу z = (a, b) соответствует точка M (x, y).
Задание. Изобразите на координатной плоскости комплексные числа:
3.3. Тригонометрическая форма комплексного числа
Комплексное число на плоскости имеет координаты точки M (x; y). При этом:
Тогда: .
Запись комплексного числа — тригонометрическая форма комплексного числа.
Число r называется модулем комплексного числа z и обозначается . Модуль – неотрицательное вещественное число. Для
.
Модуль равен нулю тогда и только тогда, когда z = 0, т.е. a = b = 0.
Число φ называется аргументом z и обозначается . Аргумент z определен неоднозначно, как и полярный угол в полярной системе координат, а именно с точностью до слагаемого кратного 2π.
Тогда принимаем: , где φ – наименьшее значение аргумента. Очевидно, что
.
При более глубоком изучении темы вводится вспомогательный аргумент φ*, такой, что
Пример 1. Найти тригонометрическую форму комплексного числа .
Решение. 1) считаем модуль: ;
2) ищем φ: ;
3) тригонометрическая форма:
Пример 2.Найти алгебраическую форму комплексного числа .
Здесь достаточно подставить значения тригонометрических функций и преобразовать выражение:
Пример 3.Найти модуль и аргумент комплексного числа
;
1) ;
2) ; φ – в 4 четверти:
3.4. Действия с комплексными числами в тригонометрической форме
· Сложение и вычитание удобнее выполнять с комплексными числами в алгебраической форме:
· Умножение – при помощи несложных тригонометрических преобразований можно показать, что при умножении модули чисел перемножаются, а аргументы складываются: ;
· Деление —
· Возведение в степень – для правило:
— формула Муавра (английский математик, француз по происхождению);
· Извлечение корня n- й степени.
Определение. Корнем n-й степени из числа z называется комплексное число u, для которого , тогда
.
Теорема. Для любого комплексного числаz, отличного от нуля извлечение корня n- й степени всегда возможно и имеет n различных решений.
Пусть , искомый корень
, тогда
, т.е.
Заключение
Помимо рассмотренных операций возможно дифференцирование комплексных чисел, составление комплексных матриц и другое.
Помимо рассмотренных комплексных чисел в алгебраической и тригонометрической форме существуют комплексные числа в показательной форме, которые применяются в электротехнике при расчете электрических цепей.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9006 — | 7249 —
или читать все.
78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Рассмотрим комплексное число, заданной в обычной (алгебраической) форме:
z=a+ib. | (1) |
Задача заключается в представлении комплексного числа (1) в тригонометрической форме. Для этого на комплексной плоскости введем полярные координаты. Примем за полюс начало координат, а за полярную ось вещественную ось R.
Как известно, полярными координатами точки z являются длина r ее радиус-вектора, равной расстоянию от точки z до полюса, и величина ее полярного угла, т.е. угла, образованного между полярной осью и вектором-радиусом точки z. Отметим, что направление отсчета угла берется от полярной оси до вектора-радиуса против часовой стрелки (Рис.1, Рис.2).
На Рис.3 изображено комплексное число z. Координаты этого числа в декартовой системе координат (a, b). Из определения функций sin и cos любого угла, следует:
(2) |
Подставляя (2) в (1), получим:
(3) |
Эта форма записи называется тригонометрической формой записи комплексного числа.
Уравнения (2) возведем в квадрат и сложим:
(4) |
r−длина радиус-вектора комплексного числа z называется модулем комплексного числа и обозначается |z|. Очевидно |z|≥0, причем |z|=0 тогда и только тогда, когда z=0.
Величина полярного угла точки, соответвующей комплексному числу z, т.е. угла φ, называется аргументом этого числа и обозначается arg z. Заметим, что arg z имеет смысл лишь при z≠0. Аргумент комплексного числа 0 не имеет смысла.
Аргумент комплексного числа определен неоднозначно. Если φ аргумент комплексного числа, то φ+2πk, k=0,1. также является аргументом комплексного числа, т.к. cos (φ+2πk)=cosφ, sin (φ+2πk)=sinφ.
Приведение комплексного числа из алгебраической формы в тригонометрическую
Пусть комплексное число представлено в алгебраической форме: z=a+bi. Представим это число в тригонометрической форме. Вычисляем модуль комплексного числа: . Вычисляем аргумент φ комплексного числа из выражений
или
. Полученные значения вставляем в уравнение (3).
Пример 1. Представить комплексное число z=1 в тригонометрической форме.
Решение. Комплексное число z=1 можно представить так: z=1+0i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=1/1. Откуда имеем φ=0. Подставляя значения модуля и аргумента в (3), получим: z=1 (cos0+isin0).
Пример 2. Представить комплексное число z=i в тригонометрической форме.
Решение. Комплексное число z=i можно представить так: z=0+1i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=0/1. Откуда имеем φ=π/2. Подставляя значения модуля и аргумента в (3), получим:
.
Ответ. .
Пример 3. Представить комплексное число z=4+3i в тригонометрической форме.
Решение. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=4/5. Откуда имеем φ=arccos (4/5). Подставляя значения модуля и аргумента в (3), получим:
.
Ответ. , где φ=arccos (4/5).
Умножение комплексных чисел в тригонометрической форме записи
z1·z2=[r1(cosφ1+i sinφ1)][r2(cosφ2+i sinφ2]=r1r2[cos(φ1+φ2)+isin(φ1+φ2)] |
z1z2=r1r2[cos(φ1+φ2)+isin(φ1+φ2)] | (5) |
В результате умножения комплексных чисел в тригонометрической форме мы получили комплексное число в тригонометрической форме, следовательно |z1z2|=r1r2, или
|z1z2|=|z1||z2|, | (6) |
т.е. модуль произведения комплексных чисел равен произведению модулей сомножителей .
arg (z1z2)=arg (z1)+arg (z2), | (7) |
т.е. аргумент произведения комплексных чисел равен сумме аргументов сомножителей .
Пример 4. Умножить комплексные числа и
.
Решение. Воспользуемся формулой (5):
Ответ. .
Деление комплексных чисел в тригонометрической форме записи
(8) |
Отсюда следует, что или
(9) |
Далее , или
(10) |
Следовательно, модуль частного двух комплексных чисел равен модулю делимого, деленному на модуль делителя, а аргумент частного двух комплексных чисел получается вычитанием аргумента делителя от аргумента делимого .
Пример 5. Делить комплексные числа и
.
Решение. Воспользуемся формулой (8):
Ответ. .
В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ mathbb
Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = sqrt <-1>$, числа $ a,b in mathbb
$ вещественные.
Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ mathbb
Принято записывать мнимую часть комплексного числа как $ Im (z) = b $, а действительную $ Re (z) = a $.
Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ overline
= a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
- Алгебраическая $ z = a+ib $
- Показательная $ z = |z|e^ $
- Тригонометрическая $ z = |z|cdot (cos (varphi)+isin (varphi)) $
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Видим, что $ a,b in mathbb
Комплексное число $ z = a+ib $ представляется в виде вектора $ overline
Аргумент обозначается $ varphi $.
Модуль $ |z| $ равняется длине вектора $ overline
Аргумент комплексного числа $ varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.
Пример 2 |
Решение |
Ответ |
$$ z_1 + z_2 = 8 — i; z_1 — z_2 = -2 + 3i $$ |
Пример 3 |
Решение |
Ответ |
$$ z_1 cdot z_2 = 17 — i; frac |
Пример 4 |
Возвести комплексное число $ z = 3+3i $ в степень: a) $ n=2 $ б) $ n=7 $ |
Решение |
Ответ |
Пример 5 |
Извлечь корень $ sqrt[3] <-1>$ над множеством $ mathbb |
Решение |
Ответ |
Пример 6 |
Решить квадратное уравнение $ x^2 + 2x + 2 = 0 $ над $ mathbb |
Решение |