Внутренняя энергия воздуха формула

Цель урока: организовать деятельность учащихся по восприятию понятий «термодинамика», «внутренняя энергия», «число степеней свободы»; по осмыслению нахождения внутренней энергии тела, идеального газа; по запоминанию общей формулы вычисления внутренней энергии идеального газа, используя понятие числа степеней свободы; по оценке внутренней энергии какого-то объёма или массы газа.

Задачи урока: усвоить понятия «термодинамика», «внутренняя энергия», «число степеней свободы»; уяснить, для чего изучаем внутреннюю энергию, почему учимся находить внутреннюю энергию идеального газа; научиться отличать одноатомный газ от двухатомного, уяснить, что у них разное число степеней свободы; научиться находить внутреннюю энергию идеального газа.

Оборудование: доска, оформленная к уроку; таблицы-картины; мячик, пластилиновый шарик; карточки – опорный конспект, домино, тесты, контрольные.

Ход урока

1. Организационный этап (знакомство с классом, знакомство с планом работы на уроке).

2. Повторение (актуализация знаний, повторение формул по МКТ газа, игра в домино: на каждую парту раздаётся комплект карточек домино, которые за определённое время надо разложить так, чтобы получился замкнутый круг; начать можно с любой карточки).

3. Изучение нового материала

• Урок начнём с показа картин:

– Использование мускульной силы человека и животных для совершения работы (картина из набора по истории).

– Использование простых механизмов (рычага, блоков, клина, ворота, наклонной плоскости) для совершения работы.

– Использование энергии ветра и воды.

– Использование перехода газа из одного состояния в другое или вещества из одного состояния в другое для получения телом механической энергии, т.е. перехода внутренней энергии в механическую (паровые турбины, тепловые электростанции, двигатели внутреннего сгорания).

• Термодинамика – часть физики, показывающая, что внутреннюю энергию можно использовать.

• Опыт с пластилиновым шариком (поднятый шарик обладает потенциальной энергией, при падении она переходит в кинетическую, но, упав на пол, шарик не отскакивает. Куда исчезла энергия? Что произошло с шариком?).

• Определение понятия «внутренняя энергия» – это энергия молекул, из которых состоит тело. Обозначается U, измеряется в джоулях (Дж).

• Какой энергией обладают молекулы? Почему? (Кинетической, потому что движутся. Потенциальной, потому что взаимодействуют.)

• Для чего мы ввели модель идеального газа? (Чтобы не учитывать взаимодействие молекул, т.к. идеальный газ – это газ, молекулы которого не взаимодействуют.) Какой вывод можно сделать об энергии молекул идеального газа? (Они обладают только кинетической энергией.)

• Мы знаем, что молекулы газа в пространстве движутся по трём направлениям: Х, Y, Z. Если кинетическая энергия молекулы равна Ек = (3/2), то на одно направление приходится энергия /2. Число 3 называют числом степеней свободы (количество направлений движения молекул) одно-атомного газа.

• А сейчас посмотрите опорный конспект вывода формулы внутренней энергии идеального газа (у каждого на парте).

• Поработаем с этим конспектом. На основании чего переходим от одного выражения к другому?

• Давайте вычислим внутреннюю энергию воздуха, находящегося в классе. Давление атмосферное 1,01 · 10 5 Па, объём возьмём по размерам класса: 6 × 12 × 3 м 3 . Учитывая, что воздух состоит из кислорода и азота, число степеней свободы равно 5, как у всех двухатомных газов.

р = 1,01 · 10 5 Па,
V = 6 · 12 · 3 м 3 ,
i = 5.

U = (i/2)pV;
U = (5/2) · 1.01 · 10 5 · 6 · 12 · 3 = 5,5 · 10 7 Дж.

Ответ: 5,5 · 10 7 Дж.

Это почти такая же энергия, которая требуется для подъёма тяжёлого самолёта на высоту 30 м.

4. Выводы по уроку

Что мы сегодня узнали? (Что такое термодинамика, внутренняя энергия, число степеней свободы.) Какова цель урока? (Для чего нужно изучать внутреннюю энергию и как её вычислять для идеального газа.)

5. Проверка усвоения. Выполните тестовое задание. Одну карточку контроля (обе лежат на каждом столе) заполните для учителя, другую – для себя, чтобы оценить свою работу.

1. Найдите внутреннюю энергию 2 кг водорода при температуре 200 °С.

А) 6,1 кДж; Б) 6,1 МДж; В) 610 000 Дж.

2. Найдите внутреннюю энергию 5 м 3 гелия при давлении 10 5 Па.

А) 7,5 МДж; Б) 7,5 кДж; В) 750 000 Дж.

3. Сравните внутреннюю энергию 32 г кислорода и 2 г водорода при температуре 23 °С.

5. От каких величин зависит внутренняя энергия газа?

А) только от Т; Б) только от V; В) от Т и V.

6. Рефлексия. По оставшейся карточке оцените свою работу. Сколько верных ответов – такая и оценка.

7. Домашнее задание. § 54 по учебнику Касьянова В.А. «Физика-10» до раздела «Изменения внутренней энергии». Вопросы 1–4 на с. 266.

8. Финал. Учитель. Благодарю за работу! Мне сегодня было приятно с вами работать.

Николай Петрович Кошкин – учитель физики высшей квалификационной категории, педагогический стаж 37 лет. Сочетает в своей работе новаторство и педагогические традиции, умеет добиваться на уроке максимальной отдачи, вовлекая детей в совместное творчество. Учит детей рационально организовывать свой труд, работать с книгой, логично и последовательно излагать свои мысли, самостоятельно выполнять задания. Его ученики неоднократно побеждали на районных олимпиадах в 2002–2005 гг., НПК старшеклассников «Путь к успеху» в секции «Физика, астрономия». В 2006 г. исследовательская работа по теме «Тест-контроль – прибор для проверки тестов» учащихся Чиркова Б. и Варламова А. была представлена на республиканской НПК «Юность – науке и технике!», турнире «ЕНОТик» (в 2006 г. учащиеся 5–8-го классов вошли в десятку лучших). Николай Петрович активно внедряет технологию модульного обучения, разработал спецкурс «Физика в сельской школе» для факультативных занятий, проводит практикумы по решению задач повышенной трудности для учителей района, успешно готовит выпускников школы к поступлению в высшие учебные заведения, руководит ШМО учителей физики, химии, биологии. Николай Петрович признан лучшим в номинации «Верность педагогической профессии» в районном конкурсе профессионального мастерства «Учитель года-2004». За свой многолетний труд неоднократно награждался грамотами РУНО, МНО Удмуртской республики. Любит разводить цветы, собирать ягоды и грибы, решать кроссворды и расчётные задачи. С женой Тамарой Александровной, учительницей начальных классов (педагогический стаж 40 лет), вырастили четверых детей: Александр – водитель, Пётр – столяр, механизатор, Илья – энергетик, студент-заочник, Екатерина – студентка ИжГСХА. Сам вырос в семье колхозников, где было шестеро детей (а в семье жены – десять). Закончив экономический факультет ИжГСХА, работал 17 лет по совместительству бухгалтером в СПК «Селеговское» Финалист республиканского конкурса «Учитель года-2007», победитель всероссийского конкурса в рамках ПНПО «Лучшие учителя России-2008», ветеран труда, награждён Знаком Почёта.

На этой странице вы можете рассчитать внутреннюю энергию идеального газа с помощью калькуляторов онлайн или самостоятельно по формулам.

через массу, молярную массу и температуру

Формула для нахождения внутренней энергии идеального одноатомного газа через массу, молярную массу и температуру:

<3> <2>cdot dfrac cdot R T> , где U — внутренняя энергия газа, m — масса газа, M — молярная масса газа, R — универсальная газовая постоянная R = 8,3144598(48) Дж⁄(моль∙К), T — абсолютная температура газа.

через давление и объем

Формула для нахождения внутренней энергии идеального одноатомного газа через давление и объем:

<3> <2>cdot p V> , где U — внутренняя энергия газа, p — давление газа, V — объем газа.

через количество вещества и температуру

Формула для нахождения внутренней энергии идеального одноатомного газа через количество вещества и температуру:

<3> <2>cdot
u RT> , где U — внутренняя энергия газа,
u
— количество вещества (в молях), R — универсальная газовая постоянная R = 8,3144598(48) Дж⁄(моль∙К), T — абсолютная температура газа.

через степени свободы

Формула для нахождения внутренней энергии идеального одноатомного газа через количество вещества и температуру:

<2>cdot
u RT> , где U — внутренняя энергия газа, i — количество степеней свободы,
u
— количество вещества (в молях), R — универсальная газовая постоянная R = 8,3144598(48) Дж⁄(моль∙К), T — абсолютная температура газа.

Количество степеней свободы молекулы идеального газа

Число степеней свободы (i) — наименьшее число независимых координат, которое необходимо ввести, чтобы определить положение тела в пространстве.

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: внутренняя энергия, теплопередача, виды теплопередачи.

Частицы любого тела — атомы или молекулы — совершают хаотическое непрекращающееся движение (так называемое тепловое движение). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела — это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом.

Внутренняя энергия термодинамической системы — это сумма внутренних энергий тел, входящих в систему.

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

1. Кинетическая энергия непрерывного хаотического движения частиц тела.
2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.
3. Энергия электронов в атомах.
4. Внутриядерная энергия.

В случае простейшей модели вещества — идеального газа — для внутренней энергии можно получить явную формулу.

Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов. Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма — ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

Функция состояния

Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

• совершение механической работы;
• теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь 🙂 Рассмотрим эти способы подробнее.

Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура — это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы — работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным. Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики). В ходе такого процесса воздух будет охлаждаться — его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

Изменение внутренней энергии: теплопередача

Теплопередача — это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы. Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом.

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

Сейчас мы рассмотрим их более подробно.

Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню — от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1 )(Изображение с сайта educationalelectronicsusa.com).

Рис. 1. Теплопроводность

Теплопроводность — это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела.

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела — такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

Происходит это вследствие другого вида теплопередачи — конвекции.

Конвекция

Конвекция — это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества.

Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции — распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

Рис. 2. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать. Если радиатор установить под потолком, то никакая циркуляция не возникнет — тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи — тепловое излучение. Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию). В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле.

В результате развития этого процесса в пространстве распространяется электромагнитная волна —«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой — в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет — частный случай электромагнитных волн.

Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет — это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше — частоты ультрафиолетового излучения.

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называются тепловым излучением — в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна — довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

Давайте ещё раз взглянем на три вида теплопередачи (рис. 3 )(изображения с сайта beodom.com).

Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение

Оцените статью
Добавить комментарий