Включение pnp транзистора в ключевом режиме

Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.

Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.

Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.

Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.

Рисунок 1. Входная характеристика транзистора

Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!

Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».

Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер — бетта» может достигать 1000 и более раз.

Как рассчитать режим работы ключевого каскада

Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.

Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, — обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.

Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.

Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.

Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.

При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).

Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база — эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.

Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.

Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»

Назначение этого резистора — надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.

Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить — просто замкнули вход всего каскада на «землю».

Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.

Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.

Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.

Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.

Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.

Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.

Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.

Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.

Рисунок 1. Входная характеристика транзистора

Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!

Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».

Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер — бетта» может достигать 1000 и более раз.

Как рассчитать режим работы ключевого каскада

Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.

Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, — обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.

Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.

Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.

Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.

При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).

Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база — эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.

Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.

Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»

Назначение этого резистора — надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.

Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить — просто замкнули вход всего каскада на «землю».

Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.

Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.

Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.

Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.

Ключевой режим работы транзистора, наверное, один из самых простых (с точки зрения поддержания параметров) и в тоже время очень часто встречающихся из режимов работы транзистора. По своей сути транзистор большую часть времени находится лишь в двух состояниях: отсечки и насыщения.Ниже показана схема включения транзистора


Использование транзистора в ключевом режиме

но прежде чем начинать описывать работу этой схемы, необходимо задекларировать несколько простых правил, при которых транзистор работает. Правила приведены для транзистора p-n-p-типа, но и для транзистора n-p-n-типа они сохраняются, но с учётом того, что полярность напряжения должна быть изменена на противоположную:

Принцип работы трназистора

  • 1. Эммитер должен иметь более положительный потенциал, чем коллектор, для n-p-n-транзистора потенциал коллектора должен быть выше.
  • 2. Цепи база – эммитер и база – коллектор работают как диоды. Обычно диод база – коллектор открыт, а диод база – эммитер смещён в обратном направлении, то есть приложенное напряжение препятствует протеканию через него тока.
  • 3. Каждый транзистор характеризуется максимальными значениями токов и напряжений. В случае превышения значений транзистор выходит из строя.
  • 4. В случае соблюдений правил 1 – 3 ток протекающий через коллектор IК прямо пропорционален току базы IБ и соблюдается следующее соотношение:

данное правило определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Из правила 2 следует, что между базой и эммитером напряжение не должно превышать 0,6…0,8 В (падение напряжения на диоде), иначе возникает очень большой ток.

Учитывая выше изложенные правила можно понять, как с помощью небольшого тока создать ток большей величины. В случае, когда контакт разомкнут через базу ток не течёт и согласно правилу 4 отсутствует коллекторный ток, следовательно, лампочка не светится. Как только замыкается контакт напряжение между базой и эммитером составит 0,6…0,8 В. Падение напряжения на сопротивлении базы Rб составит примерно 9,3 В, а ток, протекающий через базу 9,3 мА. Казалось бы, с учётом правила 4, что через лампочку должен протекать ток порядка 930 мА (примем значение h21Э = 100), но это не так. Как говорилось ранее, правило 4 действует лишь с учётом правил 1 – 3. В нашем случае, когда ток через лампочку, а следовательно и ток коллектора достигнет значения 0,1 А падение напряжения на лампочке будет равно 10 В. Далее, согласно правила 1, роста тока не будет, так как потенциал коллектора и эммитера сравняется (в реальности падение напряжения на лампочке никогда не будет равно напряжению питания, потому что на транзисторе будет падение напряжения равное напряжению насыщения транзистора). Когда напряжение на коллекторе будет приближаться к напряжению на эммитере, транзистор переходит в режим насыщения и изменение напряжения на коллекторе прекращаются.

Расчёт ключевой схемы

Как же рассчитать элементы «обвязки» транзистора? Во-первых, необходимо, как и в случае любой другой схемы понять, что необходимо получить и что приходит на вход.

1. Рассчитывают ток протекающий через коллектор:

, где

Upit – напряжение питания,

RК – сопротивление в коллекторной цепи.

2. Рассчитывают базовый ток:

3. Рассчитывают сопротивление базового резистора Rб:

Uвх – напряжение на входе ключевого каскада.

Казалось бы, на этом можно закончить рассматривать ключевой каскад, он настолько простой, что и говорить не о чем. Но есть ещё одно дополнение, как было сказано выше, ключевой каскад характеризуется использованием транзистора в двух состояниях: насыщения и отсечки. С состоянием насыщения всё понятно транзистор жестко включён в цепь и на него внешние факторы не влияют. Что же происходит в состоянии отсечки транзистора, когда его база отключена от схемы, говорят, что она «повисла в воздухе». Так как мы окружены постоянно электричеством, то на базовый вывод могут быть наводки в виде блуждающих токов, да и в транзисторе в результате его работы могут быть внутренние токи. В таком случае транзистор не будет закрыт полностью, поэтому на всякий случай между базой и эммитером транзистора включают сопротивление RБЭ, которое выбирается таким, чтобы при работе падение напряжения на нём не составило меньше, чем 0,6 В. Он берётся примерно раз в 10 больше базового сопротивления.

Ниже приведён пример, который часто используют при подключении ключевого каскада к выводу микросхем, где стандартное выходно напряжение составляет +5 В.


Пример использования транзистора в ключевом режиме

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Оцените статью
Добавить комментарий