Еще одна популярная задача теории вероятностей (наравне с задачей о подбрасывании монет) — задача о подбрасывании игральных костей.
Обычно задача звучит так: бросается одна или несколько игральных костей (обычно 2, реже 3). Необходимо найти вероятность того, что число очков равно 4, или сумма очков равна 10, или произведение числа очков делится на 2, или числа очков отличаются на 3 и так далее.
Основной метод решения подобных задач — использование формулы классической вероятности, который мы и разберем на примерах ниже.
Ознакомившись с методами решения, вы сможете скачать супер-полезный Excel-файл для расчета вероятности при бросании 2 игральных костей (с таблицами и примерами).
Одна игральная кость
С одной игральной костью дело обстоит до неприличия просто. Напомню, что вероятность находится по формуле $P=m/n$, где $n$ — число всех равновозможных элементарных исходов эксперимента с подбрасыванием кубика или кости, а $m$ — число тех исходов, которые благоприятствуют событию.
Пример 1. Игральная кость брошена один раз. Какова вероятность, что выпало четное число очков?
Так как игральная кость представляет собой кубик (еще говорят, правильная игральная кость, то есть кубик сбалансированный, так что выпадает на все грани с одинаковой вероятностью), граней у кубика 6 (с числом очков от 1 до 6, обычно обозначаемых точкам), то и общее число исходов в задаче $n=6$. Благоприятствуют событию только такие исходы, когда выпадет грань с 2, 4 или 6 очками (только четные), таких граней $m=3$. Тогда искомая вероятность равна $P=3/6=1/2=0.5$.
Пример 2. Брошен игральный кубик. Найти вероятность выпадения не менее 5 очков.
Рассуждаем также, как и в предыдущем примере. Общее число равновозможных исходов при бросании игрального кубика $n=6$, а условию "выпало не менее 5 очков", то есть "выпало или 5, или 6 очков" удовлетворяют 2 исхода, $m=2$. Нужная вероятность равна $P=2/6=1/3=0.333$.
Даже не вижу смысла приводить еще примеры, переходим к двум игральным костям, где все интереснее и сложнее.
Две игральные кости
Когда речь идет о задачах с бросанием 2 костей, очень удобно использовать таблицу выпадения очков. По горизонтали отложим число очков, которое выпало на первой кости, по вертикали — число очков, выпавшее на второй кости. Получим такую заготовку (обычно я делаю ее в Excel, файл вы сможете скачать ниже):
А что же в ячейках таблицы, спросите вы? А это зависит от того, какую задачу мы будем решать. Будет задача про сумму очков — запишем туда сумму, про разность — запишем разность и так далее. Приступаем?
Пример 3. Одновременно бросают 2 игральные кости. Найти вероятность того, что в сумме выпадет менее 5 очков.
Сначала разберемся с общим числом исходов эксперимента. когда мы бросали одну кость, все было очевидно, 6 граней — 6 исходов. Здесь костей уже две, поэтому исходы можно представлять как упорядоченные пары чисел вида $(x,y)$, где $x$ — сколько очков выпало на первой кости (от 1 до 6), $y$ — сколько очков выпало на второй кости (от 1 до 6). Очевидно, что всего таких пар чисел будет $n=6cdot 6=36$ (и им соответствуют как раз 36 ячеек в таблице исходов).
Вот и пришло время заполнять таблицу. В каждую ячейку занесем сумму числа очков выпавших на первой и второй кости и получим уже вот такую картину:
Теперь эта таблица поможем нам найти число благоприятствующих событию "в сумме выпадет менее 5 очков" исходов. Для этого подсчитаем число ячеек, в которых значение суммы будет меньше 5 (то есть 2, 3 или 4). Для наглядности закрасим эти ячейки, их будет $m=6$:
Тогда вероятность равна: $P=6/36=1/6$.
Пример 4. Брошены две игральные кости. Найти вероятность того, что произведение числа очков делится на 3.
Составляем таблицу произведений очков, выпавших на первой и второй кости. Сразу выделяем в ней те числа, которые кратны 3:
Остается только записать, что общее число исходов $n=36$ (см. предыдущий пример, рассуждения такие же), а число благоприятствующих исходов (число закрашенных ячеек в таблице выше) $m=20$. Тогда вероятность события будет равной $P=20/36=5/9$.
Как видно, и этот тип задач при должной подготовке (разобрать еще пару тройку задач) решается быстро и просто. Сделаем для разнообразия еще одну задачу с другой таблицей (все таблицы можно будет скачать внизу страницы).
Пример 5. Игральную кость бросают дважды. Найти вероятность того, что разность числа очков на первой и второй кости будет от 2 до 5.
Запишем таблицу разностей очков, выделим в ней ячейки, в которых значение разности будет между 2 и 5:
Итак, что общее число равновозможных элементарных исходов $n=36$, а число благоприятствующих исходов (число закрашенных ячеек в таблице выше) $m=10$. Тогда вероятность события будет равной $P=10/36=5/18$.
Итак, в случае, когда речь идет о бросании 2 костей и простом событии, нужно построить таблицу, выделить в ней нужные ячейки и поделить их число на 36, это и будет вероятностью. Помимо задач на сумму, произведение и разность числа очков, также встречаются задачи на модуль разности, наименьшее и наибольшее выпавшее число очков (подходящие таблицы вы найдете в файле Excel).
Другие задачи про кости и кубики
Конечно, разобранными выше двумя классами задач про бросание костей дело не ограничивается (просто это наиболее часто встречаемые в задачниках и методичках), существуют и другие. Для разнообразия и понимания примерного способа решения разберем еще три типовых примера: на бросание 3 игральных костей, на условную вероятность и на формулу Бернулли.
Пример 6. Бросают 3 игральные кости. Найдите вероятность того, что в сумме выпало 15 очков.
В случае с 3 игральными костями таблицы составляют уже реже, так как их нужно будет аж 6 штук (а не одна, как выше), обходятся простым перебором нужных комбинаций.
Найдем общее число исходов эксперимента. Исходы можно представлять как упорядоченные тройки чисел вида $(x,y,z)$, где $x$ — сколько очков выпало на первой кости (от 1 до 6), $y$ — сколько очков выпало на второй кости (от 1 до 6), $z$ — сколько очков выпало на третьей кости (от 1 до 6). Очевидно, что всего таких троек чисел будет $n=6cdot 6cdot 6=216$ .
Теперь подберем такие исходы, которые дают в сумме 15 очков.
Получили $m=3+6+1=10$ исходов. Искомая вероятность $P=10/216=0.046$.
Пример 7. Бросают 2 игральные кости. Найти вероятность того, что на первой кости выпало не более 4 очков, при условии, что сумма очков четная.
Наиболее простой способ решения этой задачи — снова воспользоваться таблицей (все будет наглядно), как и ранее. Выписываем таблицу сумм очков и выделяем только ячейки с четными значениями:
Получаем, что согласно условию эксперимента, всего есть не 36, а $n=18$ исходов (когда сумма очков четная).
Теперь из этих ячееек выберем только те, которые соответствуют событию "на первой кости выпало не более 4 очков" — то есть фактически ячейки в первых 4 строках таблицы (выделены оранжевым), их будет $m=12$.
Искомая вероятность $P=12/18=2/3.$
Эту же задачу можно решить по-другому, используя формулу условной вероятности. Введем события:
А = Сумма числа очков четная
В = На первой кости выпало не более 4 очков
АВ = Сумма числа очков четная и на первой кости выпало не более 4 очков
Тогда формула для искомой вероятности имеет вид: $$ P(B|A)=frac. $$ Находим вероятности. Общее число исходов $n=36$, для события А число благоприятствующих исходов (см. таблицы выше) $m(A)=18$, а для события АВ — $m(AB)=12$. Получаем: $$ P(A)=frac
Пример 8. Игральный кубик брошен 4 раза. Найти вероятность того, что четное число очков выпадет ровно 3 раза.
В случае, когда игральный кубик бросается несколько раз, а речь в событии идет не о сумме, произведении и т.п. интегральных характеристиках, а лишь о количестве выпадений определенного типа, можно для вычисления вероятности использовать формулу Бернулли.
Итак, имеем $n=4$ независимых испытания (броски кубика), вероятность выпадения четного числа очков в одном испытании (при одном броске кубика) равна $p=3/6=1/2=0.5$ (см. выше задачи для одной игральной кости).
Тогда по формуле Бернулли $P=P_n(k)=C_n^k cdot p^k cdot (1-p)^$, подставляя $k=3$, найдем вероятность того, что четное число очков появится 3 раза: $$ P_4(3)=C_4^3 cdot left(1/2
ight)^3 cdot left(1-1/2
ight)^1=4 cdot left(1/2
ight)^4=1/4=0,25. $$
Приведем еще пример, решаемый аналогичным образом.
Пример 9. Игральную кость бросают 8 раз. Найти вероятность того, что шестёрка появится хотя бы один раз.
Подставляем в формулу Бернулли следующие значения: $n=8$ (число бросков), $p=1/6$ (вероятность появления 6 при одном броске), $kge 1$ (хотя бы один раз появится шестерка). Прежде чем вычислять эту вероятность, напомню, что практически все задачи с формулировкой "хотя бы один. " удобно решать, переходя к противоположному событию "ни одного. ". В нашем примере сначала стоит найти вероятность события "Шестёрка не появится ни разу", то есть $k=0$: $$ P_8(0)=C_8^0 cdot left(1/6
ight)^0 cdot left(1-1/6
ight)^8=left(5/6
ight)^8. $$ Тогда искомая вероятность будет равна $$ P_8(kge 1)=1-P_8(0)=1-left(5/6
ight)^8=0.767. $$
Полезные ссылки
Для наглядного и удобного расчета вероятностей в случае бросания двух игральных костей я сделала
Файл с таблицами для расчета вероятности.
В нем приведены таблицы суммы, произведения, разности, минимума, максимума, модуля разности числа очков.
Вводя число благоприятствующих исходов в специальную ячейку вы получите рассчитанную вероятность (в обычных и десятичных дробях). Файл открывается программой Excel.
Еще по теории вероятностей:
В решебнике вы найдете более 400 задач о бросании игральных костей и кубиков с полными решениями (вводите часть текста для поиска своей задачи):
Разделы: Математика
Основная цель – на популярном уровне познакомить школьников с разделом дискретной математики, который приобрел сегодня серьезное значение в связи с развитием теории вероятностей, математической логики, информационных технологий. Учащиеся должны получить представление о том, что такое комбинаторная задача, познакомиться с понятием событие, равновозможные события, научить определять вероятность того или иного события, научить решать задачи по данной теме. Расширение кругозора учащихся. Развитие интереса учащихся к изучению нового раздела математики. Повышение математической культуры, интеллектуального уровня учащихся.
ХОД УРОКА
I. Актуализация задач урока.
II. Устный счет.
1. Какими вопросами занимается раздел математики – комбинаторика?
(Комбинаторика – раздел математики, в котором изучаются различные вопросы, связанные с взаимным расположением частей данного множества, состоящего обычно из конечного числа элементов.)
2. Посчитайте: 2!; 3!; 4!; 5! .
(Ответ: 2; 6; 24; 120).
3. Всем известна знаменитая басня Ивана Крылова “Квартет”:
Проказница Мартышка,
Осел, Козел
Да косолапый Мишка
Затеяли квартет…
Как помниться, герои басни никак не могли усесться. Подсчитайте, сколькими способами герои квартета могут пересаживаться?
(Решение Рn = 4! = 24 способа).
4. В сборнике занимательных задач Я. Перельмана “Живая математика” есть рассказ “Бесплатный обед”. В нем описывается случай, происшедший с десятью выпускниками, которые не могут отпраздновать окончание школы, потому что никак не решат: в каком порядке им сесть.
На выручку им пришел официант, который предложил сегодня сесть, как придется, на другой день придти и сесть по-другому и так каждый день, пока не наступит такой день, когда они опять сядут так, как сидят сегодня. И тогда официант обещал угостить всех бесплатным обедом. Как вы думаете, долго ли друзьям придется дожидаться бесплатного обеда?
(РЕШЕНИЕ: Рn = 10! =3 628 800 . Число n! с ростом n растет очень быстро. Это означает, что на самом деле официант ничем не рисковал, так как обещанное событие произойдет почти через 10 000 лет.)
5. Встретились 5 друзей. Сколько было рукопожатий?
III. Объяснение нового материала.
Кое-что из прошлого теории вероятности.
(Прилагается к уроку презентация Приложение 1 >, выполненная в Power Point, так как суммарный объем приложений не должен превышать 200 Кб, то презентация сокращена до минимума)
Еще первобытный вождь понимал, что у десятка охотников вероятность поразить копьем зубра гораздо больше, чем у одного. Поэтому и охотились только коллективно.
Неосновательно было бы думать, что такие древние полководцы, как Александр Македонский или Дмитрий Донской, готовясь к сражению, уповали только на доблесть и искусство воинов.
Несомненно, они на основании наблюдений и опыта военного руководства умели как-то оценить вероятность своего возращения со щитом или на щите, знали, когда принимать бой, когда уклониться от него. Они не были рабами случая, но вместе с тем они были еще очень далеки от теории вероятностей.
Позднее, с опытом, человек все чаще стал взвешивать случайные события, классифицировать их исходы как невозможные, возможные и достоверные. Он заметил, что случайностями не так уж редко управляют объективные закономерности. Вот простейший опыт – подбрасывают монету. Выпадение орла или решки, конечно, чисто случайное явление. Но при многократном подбрасывании обычной монеты можно заметить, что появление решки происходит примерно в половине случаев.
Кто и когда впервые проделал опыт с монетой, неизвестно. Французский естествоиспытатель Ж.Л.Л.Бюффон (1707 – 1788) в 18 столетии 4040 раз подбрасывал монету – решка выпала 2048 раз. Математик К.Пирсон в начале двадцатого столетия подбрасывал ее 24 000 раз – решка выпала 12 012 раз. Лет 40 назад американские экспериментаторы повторили опыт. При 10 000 подбрасываний решка выпала 4 979 раз. Значит, результаты бросаний монеты, хотя каждое из них и является случайным событием, при неоднократном повторении подвластны объективному закону.
Наиболее интересные задачи теории вероятности возникли в области азартных игр. Этому, по-видимому, способствовало наличие таких “наглядных пособий”, как монета или игральная кость.
К азартным играм относили бросание шестигранных игральных костей. Слово “азар” по-арабски означает “трудный”. Так, арабы называли азартной игрой комбинацию очков, которая при бросании нескольких костей могла появиться лишь единственным способом. Например, при бросании двух костей трудным (“азар”) считалось появление в сумме двух или двенадцати очков.
Впервые основы теории вероятностей были изложены последовательно французским математиком П.Лапласом (1749-1827) в книге “Аналитическая теория вероятностей”.
В предисловии автор писал: “Замечательно, что наука, которая началась с рассмотрения азартных игр, обещает стать наиболее важным объектом человеческого знания… Ведь по большей части важнейшие жизненные вопросы являются на самом деле лишь задачами теории вероятностей”.
П.Лаплас не мог предусмотреть, что пройдет несколько десятилетий и интерес к теории вероятностей снизится. А так на деле и случилось. Во второй половине XIX века и в начале XX века некоторые математики перестали интересоваться теорией вероятностей как математической дисциплиной.
К счастью последние годы теория вероятностей вернулась в школьную программу, медленными, но уверенными шагами. Вот и наша задача – научиться решать такие жизненные задачи с помощью теории вероятностей.
Рассмотрим следующие примеры:
Пример 1. Пусть на стол бросают монету. В результате обязательно произойдет одно из двух событий (либо “выпала решка”, либо “выпал орел”)
Событие А: “Выпала решка”
Событие В: “Выпал орел”
Так как предполагается, что монета не изогнута, то события А и В в нашем примере равновозможные и одно из них обязательно произойдет. Тогда вероятность события определяется следующим образом: Р(А) =, где n – число всех равновозможных случаев, m – число случаев, благоприятствующих событию А. Тогда Р(А) =
и Р(В) =
.
Пример 2. Пусть на стол бросают игральный кубик.
Возможны 6 случаев: выпадение 1, 2, 3, 4, 5, 6 очков. Эти случаи равновозможные.
Событие А: “выпадение 3 очков”, тогда Р(А) = .
Пример 3. Двое играют в эту игру. Они бросают два кубика. Первый получает очко, если выпадет сумма 8. Второй получает очко, если выпадет сумма 9. Справедлива ли эта игра?
Событие А: “при бросании двух кубиков выпало 8 очков”
Событие В: “при бросании двух кубиков выпало 9 очков”
При бросании двух кубиков могут получиться следующие равновозможные результаты:
Задача 1. Бросают два кубика. Суммируют число очков, выпавших на верхних гранях кубиков. Построить множество элементарных событий W и его подмножество, соответствующие указанному событию А:
Найти вероятность события А. Построить подмножество, соответствующие событию (дополнение А). Найти его вероятность.
Решение. При бросании двух кубиков получим 36 элементарных событий. При этом опыте элементарным событием будет пара чисел (A, B), выпавших на первом и втором кубиках соответственно. Обозначим это событие . Тогда множество элементарных событий W имеет вид:
W = .
Событию A благоприятствуют 15 исходов
, поэтому
А = .
Используя формулу классической вероятности, получаем:
Построим подмножество, соответствующие событию :
=
.
Вероятность
Задача 2. Два лица договорились встретиться в определенном месте между 16 и 17, причем пришедший первым ждет другого в течение 15 мин., после чего уходит. Найти вероятность их встречи, если приход каждого в течение указанного часа может произойти в любое время и моменты прихода независимы.
Решение. Обозначим момент прихода первого лица через , а момент прихода второго лица через
. На плоскости в качестве единицы масштаба выберем час. Всевозможные исходы изобразятся точками квадрата со сторонами 1. Для того чтобы встреча произошла, необходимо и достаточно, чтобы выполнялось неравенство
, т. к. 15 мин. составляют
часа.
Исходы, благоприятствующие встрече, изображены в заштрихованной области.
Используем геометрическую вероятность: искомая вероятность равна отношению площади заштрихованной области к площади всего квадрата:
Задача 3. В одном сосуде находятся 5 белых и 6 черных шаров, во втором – 9 белых и 6 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10?
Решение. Событие А – вынут черный шар.
сумма очков, выпавших на верхних гранях меньше 10;
сумма очков, выпавших на верхних гранях больше или равна 10.
Тогда по формуле полной вероятности получаем:
Используя формулу Байеса, можем узнать вероятность того, что сумма очков была не меньше 10, и при этом был вынут черный шар.
Задача 4. Стоматологическая клиника распространяет рекламные листки у входа в метро. Опыт показывает, что в одном случае из тысячи следует обращение в клинику. Найти вероятность того, что при распространении 50 тыс. листков число обращений будет: а) равно 60; б) находится в границах от 55 до 65.
Решение. а) Используем локальную теорему Муавра – Лапласа:
Где .
Имеем:
Найдем значение Х:
По таблице находим: . Искомая вероятность
Б) Используем интегральную теорему Муавра – Лапласа:
Где
функция Лапласа.
Имеем:
Искомая вероятность равна:
Ответ: а) 0,0206; б) 0,2219.
Задача 5. Случайная величина Х задана плотностью распределения вероятностей (см. график). Построить график функции распределения вероятностей, найти математическое ожидание и дисперсию случайной величины.