Верные цифры числа это

Значащие цифры десятичного числа – это все его цифры, начиная с первой ненулевой слева.

x = 0.002036, цифры 2036 являются значащими;

x = 2.27×10 6 , значащими цифрами являются цифры 2, 2, 7;

x = 2270000, все цифры этого числа являются значащими.

Значащая цифра в записи числа верна, если абсолютная погрешность числа меньше или равна пяти единицам разряда, следующего за этой цифрой.

Определить, сколько верных значащих цифр содержит число:

x = 0.002306 ± 0.00001.

Для определения числа верных значащих цифр запишем x и Dx таким образом, чтобы легко было сравнить разряды этих чисел:

x = 0.002306, абсолютная погрешность Dx = 0.00001.

Третья значащая цифра (0) не может быть верной, так как она одного порядка с погрешностью. Верными могут быть цифры, которые стоят перед ней (2, 3). Цифра 3 будет верной, если Dx £ 0.00005. В нашем случае это условие выполнено, следовательно, 2, 3 – верные значащие цифры.

Цифры в записи числа, следующие за верными, называются сомнительными.

В числе x = 1.121 три верные значащие цифры (1, 1, 2) и одна сомнительная (1).

x = 0.002306 ± 0.00007;

В числе x = 0.002306 одна верная значащая цифра (2), три сомнительные (3, 0, 6).

В числе x = 12.3 три значащие цифры, две верные значащие цифры (1, 2), одна сомнительная (3).

В числе x = 12.3 одна верная значащая цифра (1), две сомнительные (2, 3).

При записи абсолютной и относительной погрешностей используют, как правило, одну-две значащие цифры. Приближенные числа принято записывать следующим образом: сначала записывают все верные значащие цифры, затем одну-две сомнительные. То есть в записи приближенного числа, как правило, число значащих цифр на одну-две больше, чем число верных значащих цифр.

Практическое правило. Одна верная значащая цифра в записи числа соответствует приблизительно относительной погрешности 10 %. И наоборот, относительная погрешность 10 % соответствует приблизительно одной верной значащей цифре. Две верные значащие цифры соответствуют относительной погрешности 1 %, три верные значащие цифры – относительной погрешности 0.1 %.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Значащие цифры приближенного значения числа

При вычислениях часто трудно указать наряду с приближенными значениями их погрешности. А в различных справочниках указывать погрешности приближенных данных неудобно, неэкономично. Поэтому при записи приближенных значений чисел требуют, чтобы по этой записи можно было определить границу абсолютной погрешности приближения. Для этого вводится понятие верной и сомнительной цифр приближенного значения числа.

Определение: Цифра называется верной, если граница абсолютной погрешности данного приближенного значения числа не превосходит (£) единицы того разряда, в котором записана эта цифра. В противном случае цифра называется сомнительной.

Пример: Определить верные и сомнительные цифры в приближенном значении числа:

1. х = 35,4 ± 0,08

В записи приближенного значения числа цифра 4 находится в разряде десятых (0,1); граница абсолютной погрешности h = 0,08 не превосходит 0,1 , следовательно, 4 – верная цифра. Очевидно, что все остальные цифры – верные.

Вывод: Если в записи приближенного значения числа какая-то цифра – верная, то и все предшествующие ей цифры так же являются верными.

2. х = 9,846 ± 0,04

Цифра 6 находится в разряде 0,001; h = 0,04 £ 0,001 , 6 – сомнительная цифра;

Цифра 4 в 0,01; h = 0,04 £ 0,01; 4 – сомнительная цифра;

Цифра 8 в 0,1; h = 0,04 £ 0,1; 8 – верная цифра;

Следовательно, 9 – верная цифра.

3. х = 945,673 ± 0,03

Цифра 3 в 0,001; h = 0,03 £ 0,001; 3 – сомнительная цифра;

Цифра 7 в 0,01; h = 0,03 £ 0,01; 7 – сомнительная цифра;

Цифра 6 в 0,1; h = 0,03 £ 0,1; 6 – верная цифра;

Следовательно, 5, 4, 9 – верные цифры.

При записи приближенных чисел принято соблюдать следующие правила.

Правила записи приближенных чисел:

  1. В записи приближенного числа сохраняют только верные цифры, сомнительные цифры округляют.
  2. Если в десятичной дроби последние верные цифры оказались нулями, то их надо сохранить в записи.
  3. Если целое число содержит в конце нули, оказавшиеся сомнительными цифрами, то они должны быть заменены на сомножитель 10 п , где п – число нулей, которые надо заменить.

Пример: Записать правильно приближенное значение числа:

1. х = 950,031 ± 0,04

Цифра 1 в 0,001; h = 0,04 £ 0,001 , 1 – сомнительная цифра;

Цифра 3 в 0,01; h = 0,04 £ 0,01 , 3 – сомнительная цифра;

Цифра 0 в 0,1; h = 0,04 £ 0,1 , 0 – верная цифра;

Следовательно, 0, 5, 9 – верные цифры.

х » 950,0 (правила 1, 2)

2. х = 0,075 ± 0,000005

h = 0,000005 £ 0,00001 , следовательно, в записи числа 0,075 все цифры являются верными, а так же цифры разрядов 0,0001 , 0,00001 будут верными.

х » 0,07500 (правила 1, 2)

3. х = 746000000 ± 5000

Цифра 0 в 1; h = 5000 £ 1 , 0 – сомнительная цифра;

Цифра 0 в 10; h = 5000 £ 10 , 0 – сомнительная цифра;

Цифра 0 в 100; h = 5000 £ 100 , 0 – сомнительная цифра;

Цифра 0 в 1000; h = 5000 £ 1000 , 0 – сомнительная цифра;

Цифра 0 в 10000; h = 5000 £ 10000 , 0 – верная цифра.

Следовательно, 0, 6, 4, 7 – в. ц.

х » 74600 × 10 4 (правила 1, 3)

Если приближенное значение числа дано без указания границы абсолютной погрешности, то ее можно определить по записи этого приближенного значения, используя определение верной и сомнительной цифр приближенного значения числа.

Пример:

1. Указать абсолютную погрешность приближенного числа а = 3,14.

Решение:

Так как в записи данного приближенного числа все цифры верные, то абсолютная погрешность не должна превосходить единицы разрядов этих цифр, то есть D х £ 1, D х £ 0,1 , D х £ 0,01.

Дата добавления: 2017-01-29 ; просмотров: 21583 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Определение 1.6. Значащими цифрами в записи приближенного числа называются:

— все ненулевые цифры;

— нули, содержащиеся между ненулевыми цифрами;

— нули, являющиеся представителями сохраненных десятичных разрядов при округлении.

В следующих примерах значащие цифры подчеркнуты.

Пример 1.6. 2.305; 0.0357; 0.001123; 0.035299879 = 0.035300.

При округлении числа 0.035299879 до шести знаков после запятой получается число 0.035300, в котором последние два нуля являются значащими. Если отбросить эти нули, то полученное число 0.0353 не является равнозначным с числом 0.035300 приближенным значением числа 0.035299879, так как погрешности указанных приближенных чисел отличаются.

Определение 1.7. Первые n значащих цифр в записи приближенного числа называются верными в узком смысле, если абсолютная погрешность числа не превосходит половины единицы разряда, соответствующего n-й значащей цифре, считая слева направо.

Наряду с данным определением иногда используется другое.

Определение 1.8. Первые n значащих цифр в записи приближенного числа называются верными в широком смысле, если абсолютная погрешность числа не превосходит единицы разряда, соответствующего n-й значащей цифре.

Пример 1.7. Определить верные цифры приближенного значения аp = 2.721 числа е, если известно, что е = = 2.718281828.

Очевидно, что | аp – е | = | 2.721 – 2.71828. | -11 Н • м 2 /кг 2 ;

б) скорость света в вакууме С = 3.00 • 10 8 м/с;

в) постоянная Планка h = 6.63 • 10 -34 Дж • с.

Замечание. Термин «верные значащие цифры» нельзя понимать буквально. Например, современное опытное значение скорости света в вакууме составляет С = 2.997925 • 10 8 м/с. Очевидно, что ни одна значащая цифра в примере 1.9, б не совпадает с соответствующей точной цифрой, но абсолютная погрешность меньше половины разряда, соответствующего последней значащей цифре в записи 3.00 • 10 8 :

|3.00 • 10 8 – 2.997925 • 10 8 | 8 8 /2 = 0.005 • 10 8 .

Правило округления чисел

Чтобы округлить число до n значащих цифр, отбрасывают все цифры, стоящие справа от n-й значащей цифры, или, если это нужно для сохранения разрядов, заменяют их нулями. При этом:

1) если первая отброшенная цифра меньше 5, то оставшиеся десятичные знаки сохраняют без изменения;

2) если первая отброшенная цифра больше 5, то к последней оставшейся цифре прибавляют единицу;

3) если первая отброшенная цифра равна 5 и среди остальных отброшенных цифр есть ненулевые, то к последней оставшейся цифре прибавляют единицу;

4) если первая из отброшенных цифр равна 5 и все отброшенные цифры являются нулями, то последняя оставшаяся цифра оставляется неизменной, если она четная, и увеличивается на единицу, если — нечетная (правило четной цифры).

Это правило гарантирует, что сохраненные значащие цифры числа являются верными в узком смысле, т. е. погрешность округления не превосходит половины разряда, соответствующего последней оставленной значащей цифре. Правило четной цифры должно обеспечить компенсацию знаков ошибок.

Пример 1.10. Приведем примеры округления до четырех значащих цифр:

а) 3.1415926 = 3.142;

Δp = |3.142 – 3.1415926| 8 = 2.998 • 10 8 ;

Δp = |2.998 • 10 8 – 2.997925 • 10 8 | = 0.000075 • 10 8 8 .

Следующая теорема выявляет связь относительной погрешности числа с числом верных десятичных знаков.

Теорема 1.1. Если положительное приближенное число имеет n верных значащих цифр, то его относительная погрешность δ не превосходит величины 10 1- n деленной на первую значащую цифру αn,:

Формула (1.11) позволяет вычислить предельную относительную погрешность

Пример 1.11. Найти относительную и абсолютную погрешности приближенных чисел: а) 3.142, б) 2.997925 • 10 8 .

а) Здесь n = 4, αn = 3. Используем формулу (1.12) для оценки относительной погрешности: δ =10 1- n / αn = 0.001/3 ≈ 0.00033.

Для определения абсолютной погрешности применим формулу (1.10):

б) Аналогично вычислим: n = 7, αn = 2, δа = 10 1- n / αn = 0.000001/2 = 0.0000005;

Δa = |ар| δа = 2.997925 10 8 • 0.0000005 ≈ 150.

Оцените статью
Добавить комментарий