No Image

Умножение целого числа на дробь

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей. Если дробь имеет вид "смешанной дроби", то также заполните поле, соответствующее целой части дроби. Если у дроби нет целой части, т.е. дробь имеет вид "простой дроби", то оставьте данное поле пустым. Затем нажмите кнопку "Вычислить".

Вид дроби: простые дроби смешанные дроби

Дробью в математике называется число, представляющее часть единицы или несколько её частей. Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби – количество взятых этих частей целого.

Дроби бывают правильными и неправильными. Правильной называется дробь, у которой числитель меньше знаменателя. Если у дроби числитель больше знаменателя, то такая дробь называется неправильной. Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть,называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь (см. пример ниже).

Сегодня мы с вами будем изучать умножение целого числа на дробь. Эта тема очень актуальна в наши дни для любых людей: от биолога до математика. Но для начала давайте познакомимся поближе с этим «чудо-зверем» — дробью.

Что такое дробь

Дробью называется число, которое состоит из нескольких долей единицы.

Если говорить простым языком, есть у вас торт. Он один, он является одним целым. Но вот вы отрезали от него половину. Это его доля. Всего один целый торт сейчас состоит из двух частей. Одну вы съели (очень уж вкусный был). То есть получается, что вы съели одну часть из двух, на которые вы его разделили. Значит, вы съели ½ торта. В подобном виде можно представить любую вещь, разделив ее на части.

Для того чтобы овладеть умением умножения числа на дробь, не нужно много мудрости или знаний. Достаточно уметь перемножать целые числа. Это довольно похожие понятия и имеют одинаковый смысл.

Умножение целых чисел можно представить в виде сложения равных слагаемых. То есть: 5*2 = 5+5= 10. В принципе, умножать дробь на число – почти такое же занятие. Мы просто находим сумму этих самых слагаемых, которые, кстати, являются одинаковыми.

Как вы могли заметить, подразумевающийся смысл у обоих действий один и тот же — сложение слагаемых.

Теперь же мы можем подняться на новую ступень и попробуем перемножить целое и дробь. Наши примеры будут выглядеть так: 5 • 2 /4. Однако прежнее определение для умножения чисел не подходит для этого случая, потому что вы не сможете заменить такое умножение сложением.

Поэтому давайте дадим новое определение для умножения, как же нам теперь нужно понимать это действие.

Как происходит умножение

Для проникновения в тайный смысл хитрого умножения дадим определение, что же все-таки это значит: чтобы совершить умножение числа на дробь, нужно найти дробь этого целого числа.

Поэтому что мы получаем? Для того чтобы умножить 5 на 2 /3, нам нужно найти 2 /3 от пяти.

Возникает естественный и значимый вопрос: почему же действия, которые с первого взгляда кажутся нам различными, такие, как поиск дроби и суммы равных чисел, в математике получили объяснение только одним словом — «умножение»?

Все это объясняется достаточно просто. Оба действия помогают нам решать очень похожие вопросы. Поэтому логичнее всего здесь будет понимать и принимать тот факт, что похожие задачи решаются одними и теми же действиями, и это в реальной жизни вполне оправдано.

Задача

Чтобы понять все это на живом примере, давайте рассмотрим такую задачу: «1 кг яблок стоит 40 р. Сколько тогда будут стоить 3 кг этих яблок?»

И ежику понятно, что подобная задача решается умножением количества килограммов на стоимость за 1 кг, т. е. 40*3 = 120 рублей.

Теперь попробуем понять и решить похожую задачу, но с дробями. Посчитаем: «1 кг яблок стоит 40 рублей. Какова будет стоимость 3 /4 кг таких яблок?»

Эта задача, как и предыдущая, тоже решается перемножением стоимости яблок за 1 кг на требуемый нам вес.

В данную задачу можно подставить любую другую дробь, будь то 2 /3 или же 3 /7, не меняя при этом концепции и условий самой задачи.

Как мы выяснили ранее, если не трогать основной смысл задач и не менять ничего, кроме чисел, то мы можем применять одинаковое действие при решении заданий, которое называется умножением. Все гениальное просто, не так ли?

Все-таки давайте вернемся к нашему главному вопросу: умножение целого на части. Как это сделать?

Для примера возьмем опять нам всем полюбившуюся задачу про яблоки. Разберем числа, которые там встречаются:

Если снова взглянуть на определение, то найти нам нужно 3 /4 от 40. Давайте начнем с более простого и попробуем найти четверть от 40, а только потом уже 3 /4.

Четверть (т. е. 1 /4) от 40 это 40 /4;

3 /4 от 40 является значение (3*40)/4.

Что мы имеем:

40*3/4 = (40*3)/4 = 10*3 = 30.

Давайте посмотрим другой случай: 40 * 5 /8 равно чему?

  • 1 /8 от 40 это 40 /8;
  • 5 /8 от 40 составляют (5*8)/40;
  • В итоге получается: 40 * 5/8 = (40*5)/8 = 5*5 = 25.

Правило умножения

Давайте теперь попробуем понять правило, применяемое для умножения:

  • Для того чтобы умножить целое число на дробь, мы должны умножить числитель этой дроби на нужное нам значение целого числа, а потом получившийся результат поставить числителем новой дроби, а знаменатель новой дроби оставить прежним.

Если понимать это правило с помощью букв, то выглядеть оно будет так:

Но также нам важно помнить об одном очень важном моменте. Перед тем как выполнять умножение, следует сократить все, что сокращается, чтобы облегчить себе жизнь. Например: умножим 15*2/3 = (15*2)/3. Но 15 и 3 можно сократить на 3, остается (5*2)/1. Но мы знаем, что любая дробь, знаменателем которой является 1 — это целое число, которое стоит в числителе. Вот и получается, что (5*2)/1 = 5*2 = 10. Поэтому для упрощения своей же работы рекомендуется сокращать числа.

Итак, вот мы с вами и научились умножать целое число на дробь. Надеюсь, что эта статья очень поможет вам в ваших продвижениях в математике. Широких вам горизонтов!

Видео

Это видео поможет вам лучше понять и запомнить, как умножается целое число на дробь.

Умножение дроби на число

Итак, можно сделать вывод, что чтобы умножить дробь на число, надо числитель этой дроби умножить на это число, а знаменатель оставить без изменения.

Задание. Найти произведение $frac<1> <3>cdot 4$

Решение. Выполним умножение по описанному выше правилу

Ответ. $frac<1> <3>cdot 4=1 frac<1><3>$

Аналогично выполняется умножения числа на дробь.

Задание. Найти произведение 3$cdot frac<1><4>$

Решение. Выполним умножение по описанному выше правилу

Ответ. $3 cdot frac<1><4>=frac<3><4>$

Умножение дробей

Произведением дробей называется такая дробь, числитель которой равен произведению числителей исходных дробей, а знаменатель – произведению их знаменателей:

Таким образом, чтобы умножить дробь на дробь, надо умножить числитель первой дроби на числитель второй и результат записать в числитель; а также перемножить знаменатели и результат записать в знаменатель.

Замечание. При выполнении умножения по возможности следует сокращать. Сокращать можно только числа стоящие в числителе с числами, стоящими в знаменателе. Числитель с числителем и знаменатель со знаменателем сокращать нельзя.

Задание. Найти произведение дробей $frac<1><3>$ и $frac<4><5>$

Решение. Выполним умножение дробей по описанному выше правилу

Ответ. $frac<1> <3>cdot frac<4><5>=frac<4><15>$

Задание. Умножить $frac<13><14>$ на $frac<14><39>$

Решение. Необходимо найти произведение $frac<13> <14>cdot frac<14><39>$ . Как видим, числа 13 и 39 можно сократить на общее число 13. Для этого сами указанные величины зачеркиваем, а над ними пишем число, которое получается после деления. Аналогично поступает со знаменателем первой дроби и числителем второй:

Ответ. $frac<13> <14>cdot frac<14><39>=frac<1><3>$

Умножение смешанных дробей

Чтобы перемножить смешанные дроби, нужно представить их в виде неправильных дробей, а затем уже выполнить умножение как обыкновенных дробей.

Задание. Найти произведение дробей 3$frac<1> <3>cdot 4 frac<2><5>$

Решение. Выполним умножение смешанных дробей по описанному выше правилу

Ответ. $3 frac<1> <3>cdot 4 frac<2><5>=14 frac<2><3>$

Для умножения смешанной дроби на целое число поступают либо аналогично и далее умножают дробь на число, либо на целое число отдельно умножают целую часть, и отдельно дробную часть смешанного числа.

Задание. Умножить смешанную дробь 3$frac<3><4>$ на 2

Решение. Выполним умножение смешанной дроби на число по описанному выше правилу

Ответ. $3 frac<3> <4>cdot 2=7 frac<1><2>$

Дробь 1 Дробь 2 Результат
Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector