No Image

Технологии управления скоростью вращения вентиляторов

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

авно уже прошли те времена, когда в компьютерах использовалось пассивное охлаждение — такие компьютеры были абсолютно бесшумными, но малопроизводительными. По мере роста производительности процессоров и других компонентов ПК росло и их энергопотребление и, как следствие, компоненты ПК становились все более «горячими». Поэтому процессоры стали оснащать массивными радиаторами, а вскоре к ним добавились и вентиляторы, то есть пассивное охлаждение процессоров уже не могло обеспечить требуемый теплоотвод для поддержания надлежащей температуры, из-за чего стали использовать воздушное охлаждение. По мере роста тактовых частот процессоров увеличивалась эффективность теплоотвода, что достигалось за счет более массивных радиаторов и более быстрых вентиляторов.

Повышение максимальной скорости вращения вентиляторов влекло за собой рост уровня создаваемого ими шума. Известно, что при увеличении скорости вращения вентилятора от значения N1 до N2 уровень создаваемого им шума возрастает от значения NL1 до NL2, причем:

Предположим, требуется увеличить скорость вращения вентилятора на 10%. При этом на 2 дБ увеличится и уровень шума, создаваемого вентилятором. Зависимость изменения уровня шума вентилятора от нормализованной скорости вращения показана на рис. 1.

Рис. 1. Зависимость изменения уровня шума (DNL) вентилятора от нормализованной скорости вращения (N2/N1)

Не менее остро, чем проблема охлаждения процессоров, стоит проблема снижения уровня шума. Идеи, заложенные в технологии энергосбережения и снижения тепловыделения, можно использовать и для снижения уровня шума систем охлаждения. Поскольку тепловыделение (и, следовательно, температура) процессора зависит от его загрузки, а при использовании технологий энергосбережения — и от его текущей тактовой частоты и напряжения питания, в периоды слабой активности процессор остывает. Соответственно нет необходимости постоянно охлаждать процессор с одинаковой интенсивностью, то есть интенсивность воздушного охлаждения, определяемая скоростью вращения вентилятора кулера процессора, должна зависеть от текущей температуры процессора.

Существует два основных способа динамического управления скоростью вращения вентиляторов, реализуемых на современных материнских платах: управление по постоянному току и управление с использованием широтно-импульсной модуляции напряжения.

Управление по постоянному току

ри технологии управления по постоянному току (Direct Current, DC) меняется уровень постоянного напряжения, подаваемого на электромотор вентилятора. Диапазон изменения напряжения составляет от 6 до 12 В и зависит от конкретной материнской платы. Данная схема управления скоростью вращения вентилятора довольно проста: контроллер на материнской плате, анализируя текущее значение температуры процессора (через встроенный в процессор термодатчик), выставляет нужное значение напряжения питания вентилятора. До определенного значения температуры процессора напряжение питания минимально, и потому вентилятор вращается на минимальных оборотах и создает минимальный уровень шума. Как только температура процессора достигает некоторого порогового значения, напряжение питания вентилятора начинает динамически меняться, вплоть до максимального значения в зависимости от температуры. Соответственно меняются скорость вращения вентилятора и уровень создаваемого шума (рис. 2).

Читайте также:  Сколько стоит семейная подписка apple music

Рис. 2. Реализация динамического управления скоростью вращения вентилятора кулера процессора при изменении напряжения питания

Рассмотренная технология реализована на всех современных материнских платах — как процессоров Intel, так и процессоров AMD. Для ее реализации необходимо установить соответствующую схему управления в BIOS материнской платы и использовать трехконтактный вентилятор (отметим, что большинство процессорных кулеров являются именно трехконтактными): два контакта — это напряжение питания вентилятора, а третий контакт — сигнал тахометра, формируемый самим вентилятором и необходимый для определения текущей скорости вращения вентилятора. Сигнал тахометра представляет собой прямоугольные импульсы напряжения, причем за один оборот вентилятора формируется два импульса напряжения. Зная частоту следования импульсов тахометра, можно определить скорость вращения вентилятора. Например, если частота импульсов тахометра равна 100 Гц (100 импульсов в секунду), то скорость вращения вентилятора составляет 50 об./с, или 3000 об./мин.

Управление с использованием широтно-импульсной модуляции напряжения

льтернативной технологией динамического управления скоростью вращения вентилятора кулера процессора является широтно-импульсная модуляция (Pulse Wide Modulation, PWM) напряжения питания вентилятора. Идея здесь тоже проста: вместо изменения амплитуды напряжения питания вентилятора напряжение подают на вентилятор импульсами определенной длительности. Амплитуда импульсов напряжения и частота их следования неизменны, и меняется только их длительность, то есть фактически вентилятор периодически включают и выключают. Подобрав частоту следования импульсов и их длительность, можно управлять скоростью вращения вентилятора. Действительно, поскольку вентилятор обладает определенной инертностью, он не может мгновенно ни раскрутиться, ни остановиться (рис. 3).

Рис. 3. Реакция вентилятора на импульс напряжения

Если длительность импульса напряжения (Ton) меньше характерного времени раскрутки вентилятора (Ton >>>>>>>>>> –>

авно уже прошли те времена, когда в компьютерах использовалось пассивное охлаждение — такие компьютеры были абсолютно бесшумными, но малопроизводительными. По мере роста производительности процессоров и других компонентов ПК росло и их энергопотребление и, как следствие, компоненты ПК становились все более «горячими». Поэтому процессоры стали оснащать массивными радиаторами, а вскоре к ним добавились и вентиляторы, то есть пассивное охлаждение процессоров уже не могло обеспечить требуемый теплоотвод для поддержания надлежащей температуры, из-за чего стали использовать воздушное охлаждение. По мере роста тактовых частот процессоров увеличивалась эффективность теплоотвода, что достигалось за счет более массивных радиаторов и более быстрых вентиляторов.

Читайте также:  Herzband active pro инструкция

Повышение максимальной скорости вращения вентиляторов влекло за собой рост уровня создаваемого ими шума. Известно, что при увеличении скорости вращения вентилятора от значения N1 до N2 уровень создаваемого им шума возрастает от значения NL1 до NL2, причем:

Предположим, требуется увеличить скорость вращения вентилятора на 10%. При этом на 2 дБ увеличится и уровень шума, создаваемого вентилятором. Зависимость изменения уровня шума вентилятора от нормализованной скорости вращения показана на рис. 1.

Рис. 1. Зависимость изменения уровня шума (DNL) вентилятора от нормализованной скорости вращения (N2/N1)

Не менее остро, чем проблема охлаждения процессоров, стоит проблема снижения уровня шума. Идеи, заложенные в технологии энергосбережения и снижения тепловыделения, можно использовать и для снижения уровня шума систем охлаждения. Поскольку тепловыделение (и, следовательно, температура) процессора зависит от его загрузки, а при использовании технологий энергосбережения — и от его текущей тактовой частоты и напряжения питания, в периоды слабой активности процессор остывает. Соответственно нет необходимости постоянно охлаждать процессор с одинаковой интенсивностью, то есть интенсивность воздушного охлаждения, определяемая скоростью вращения вентилятора кулера процессора, должна зависеть от текущей температуры процессора.

Существует два основных способа динамического управления скоростью вращения вентиляторов, реализуемых на современных материнских платах: управление по постоянному току и управление с использованием широтно-импульсной модуляции напряжения.

Управление по постоянному току

ри технологии управления по постоянному току (Direct Current, DC) меняется уровень постоянного напряжения, подаваемого на электромотор вентилятора. Диапазон изменения напряжения составляет от 6 до 12 В и зависит от конкретной материнской платы. Данная схема управления скоростью вращения вентилятора довольно проста: контроллер на материнской плате, анализируя текущее значение температуры процессора (через встроенный в процессор термодатчик), выставляет нужное значение напряжения питания вентилятора. До определенного значения температуры процессора напряжение питания минимально, и потому вентилятор вращается на минимальных оборотах и создает минимальный уровень шума. Как только температура процессора достигает некоторого порогового значения, напряжение питания вентилятора начинает динамически меняться, вплоть до максимального значения в зависимости от температуры. Соответственно меняются скорость вращения вентилятора и уровень создаваемого шума (рис. 2).

Рис. 2. Реализация динамического управления скоростью вращения вентилятора кулера процессора при изменении напряжения питания

Рассмотренная технология реализована на всех современных материнских платах — как процессоров Intel, так и процессоров AMD. Для ее реализации необходимо установить соответствующую схему управления в BIOS материнской платы и использовать трехконтактный вентилятор (отметим, что большинство процессорных кулеров являются именно трехконтактными): два контакта — это напряжение питания вентилятора, а третий контакт — сигнал тахометра, формируемый самим вентилятором и необходимый для определения текущей скорости вращения вентилятора. Сигнал тахометра представляет собой прямоугольные импульсы напряжения, причем за один оборот вентилятора формируется два импульса напряжения. Зная частоту следования импульсов тахометра, можно определить скорость вращения вентилятора. Например, если частота импульсов тахометра равна 100 Гц (100 импульсов в секунду), то скорость вращения вентилятора составляет 50 об./с, или 3000 об./мин.

Читайте также:  Garmin dakota 20 прошивка

Управление с использованием широтно-импульсной модуляции напряжения

льтернативной технологией динамического управления скоростью вращения вентилятора кулера процессора является широтно-импульсная модуляция (Pulse Wide Modulation, PWM) напряжения питания вентилятора. Идея здесь тоже проста: вместо изменения амплитуды напряжения питания вентилятора напряжение подают на вентилятор импульсами определенной длительности. Амплитуда импульсов напряжения и частота их следования неизменны, и меняется только их длительность, то есть фактически вентилятор периодически включают и выключают. Подобрав частоту следования импульсов и их длительность, можно управлять скоростью вращения вентилятора. Действительно, поскольку вентилятор обладает определенной инертностью, он не может мгновенно ни раскрутиться, ни остановиться (рис. 3).

Рис. 3. Реакция вентилятора на импульс напряжения

Если длительность импульса напряжения (Ton) меньше характерного времени раскрутки вентилятора (Ton >>>>>>>>>> –>

Сменить шрифт на обычный короткая ссылка на новость:
следующая новость | предыдущая новость

Вентиляторы с двумя проводами имеют стандартное подключение к питанию и к «земле». В варианте с тремя проводами к стандартной паре добавляется тахометр, который возвращает сигнал с частотой, пропорциональной скорости вращения. Вентилятор, подключаемый четырьмя проводами, обеспечен еще и PWM. Если говорить кратко, PWM представляет собой систему контроля уровня питания, подаваемого на электромотор вентилятора, посредством изменения относительной ширины импульсов в цепи.

Управлять скоростью вращения вентилятора, подключенного лишь по двум проводам, можно линейно (изменением напряжения питания), или же с помощью низкочастотной ШИМ. Однако, так как обратной связью (тахометром) такой вентилятор не наделен, узнать, с какой скоростью он вращается, и вращается ли вообще, не представляется возможным. Ведь, фактически, цепь управления в таком случае остается незамкнутой.

Вентилятор с тремя проводами может управляться такими же способами, как и более простая версия с двумя – по постоянному току или низкочастотной PWM. Разница между кулерами с 2 и 3 проводами будет состоять в наличии тахометра у последнего, следовательно, цепь контроля окажется замкнутой, а с помощью датчика оборотов можно будет определить как скорость, так и сам факт вращения лопастей.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector