No Image

Эффективный диаметр молекулы кислорода

1 просмотров
11 марта 2020

Найти эффективный диаметр σ молекулы кислорода, считая известными для кислорода критические значения Тки рк.

Дано:

р к = 5,07 МПа = 5,07·10 6 Па

Решение:

Постоянная b , входящая в уравнение Ван-дер-Ваальса,
приближенно равна учетверенному собственному объему молекул

,

Объем всех молекул

где – объем одной молекулы,

С другой стороны,

Отсюда объем одной молекулы

С другой стороны объем одной молекулы

Замечая, что — постоянная Больцмана, получим

Это значение хорошо совпадает со значением σ, полученным другими способами (см. решение 5.141).

Ответ:

Эффективный диаметр молекулы — минимальное расстояние, на которое сближаются центры двух молекул при столкновении.

При столкновении, молекулы сближаются до некоторого наименьшего расстояния, которое условно считается суммой радиусов взаимодействующих молекул. Столкновение между одинаковыми молекулами может произойти только в том случае, если их центры сблизятся на расстояние, меньшее или равное диаметру d <displaystyle d> — эффективному диаметру молекулы.

Через эффективный диаметр молекулы можно выразить эффективное сечение молекулы — как круг радиусом d. Столкновение между молекулами возможно только в том случае, когда центр молекулы окажется внутри круга, представляющего собой эффективное сечение молекулы.

С точки зрения теории межмолекулярных взаимодействий эффективный радиус, представляющий собой половину эффективного диаметра — расстояние от условного центра молекулы, отвечающее минимуму потенциальной энергии в поле этой молекулы.

Для молекул, имеющих точечную симметрию, условный центр может быть определен как центр масс молекулы, для сложных молекул он определяется феноменологически.

В общем случае эффективный радиус — усредненная величина, т.к. в случае, когда молекула не является концентрически симметричной (одноатомная молекула), радиус является функцией от угла в системе, связанной с молекулой.

=<frac <iint r(varphi , heta )dvarphi d heta ><2pi ^<2>>>>"> r >= ∬ r ( φ , θ ) d φ d θ 2 π 2 <displaystyle =<frac <iint r(varphi , heta )dvarphi d heta ><2pi ^<2>>>> =<frac <iint r(varphi , heta )dvarphi d heta ><2pi ^<2>>>>"/>

Читайте также:  Программа которая по фото находит человека

Эффективный диаметр молекул

В случае соударения двух одинаковых шаров минимальное расстояние между центрами шаров равно их диаметру. Поэтому эффективным диаметром молекулы d называют минимальное расстояние, на которое сближаются при соударении центры двух молекул.

Ясно, что эффективный диаметр молекулы зависит от скорости их сближения (кинетической энергии на большом расстоянии), а значит – от температуры.

Длина свободного пробега молекулы — это среднее расстояние (обозначаемое ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.

Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега ( ). Величина является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

Формула

, где — эффективное сечение молекулы, — концентрация молекул.

Явления переноса

Явления переноса в газах и жидкостях состоят в том, что в этих веществах возникает упорядоченный, направленный перенос массы (диффузия), импульса (внутренняя энергия) и внутренней энергии (теплопроводность). При этом в газах нарушается полная хаотичность движения молекул и распределение молекул по скоростям. Отклонениями от закона Максвелла объясняется направленный перенос физических характеристик вещества в явлениях переноса.

1. Теплопроводность.

Явление теплопроводности наблюдается, если в различных частях рассматриваемого газа температуры различны. Рассмотрение явления теплопроводности с микроскопической точки зрения показывает, что количество теплоты переносимое через площадку ΔS, перпендикулярную направлению переноса прямо пропорционально коэффициенту тепло проводимости χ, зависящему от рода вещества или газа, градиенту температуры , величины площадки ΔS и времени наблюдения Δt

Знак минус в законе Фурье показывает, что теплота переносится в направлении убывания температуры Т.

Коэффициент теплопроводности χ равен

где удельная теплоёмкость газа при постоянном объёме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объёме).

Читайте также:  Защитное стекло для телефона отзывы

плотность газа, средняя скорость теплового движения молекул

средняя длина свободного пробега.

Диффузия

Явление диффузии заключается в самопроизвольном перемешивании молекул различных газов или жидкостей.

Рассмотрение явления самодиффузии с макроскопической точки зрения было сделано Фиком, который установил следующий закон: масса газа, переносимая через площадку ΔS, перпендикулярную к направлению переноса за время Δt прямо пропорциональна коэффициенту самодиффузииD, зависящему от рода газа, градиенту плотности , величине площадки ΔS и времени наблюдения Δt.

Знак минус показывает, что масса газа переносится в направлении убывания плотности. Коэффициент самодиффузииD численно равен массе газа переносимой за единицу времени через единичную площадку перпендикулярную направлению переноса, при градиенте плотности равном единице

Внутренняя энергия термодинамической системы число степеней свободы

Важной характеристикой термодинамиче­ской системы является ее внутренняя энергияU — энергия хаотического (тепло­вого) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутрен­ней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

Внутренняя энергия — однозначная функция термодинамического состояния системы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, как система пришла в данное состояние). Это

означает, что при переходе системы из одного состояния в другое изменение внут­ренней энергии определяется только раз­ностью значений внутренней энергии этих состояний и не зависит от пути перехода. В § 1 было введено понятие числа степеней свободы — числа независимых переменных (координат), полностью опре­деляющих положение системы в простран­стве. В ряде задач молекулу одноатомного газа (рис. 77, а) рассматривают как мате­риальную точку, которой приписывают три

степени свободы поступательного движе­ния. При этом энергию вращательного движения можно не учитывать (r—>0,J= mr 2 ®0, Tвр=Jw 2 /2®0).

Читайте также:  Продвижение канала ютуб платно

В классической механике молекула двухатомного газа в первом приближении рассматривается как совокупность двух материальных точек, жестко связанных недеформируемой связью (рис. 77,б). Эта система кроме трех степеней свободы по­ступательного движения имеет еще две степени свободы вращательного движе­ния. Вращение вокруг третьей оси (оси, проходящей через оба атома) лишено смысла. Таким образом, двухатомный газ обладает пятью степенями свободы (i=5). Трехатомная (рис. 77,0) и многоатомная нелинейные молекулы имеют шесть степе­ней свободы: три поступательных и три вращательных. Естественно, что жесткой связи между атомами не существует. По­этому для реальных молекул необходимо учитывать также степени свободы колеба­тельного движения.

Независимо от общего числа степеней свободы молекул три степени свободы всегда поступательные. Ни одна из по­ступательных степеней свободы не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем оди­наковая энергия, равная 1 /3значения

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9989 – | 7783 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Комментировать
1 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector