No Image

Что значит конечное множество

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020
  • Конечное множество — множество, количество элементов которого конечно, то есть, существует неотрицательное целое число k, равное количеству элементов этого множества. В противном случае множество называется бесконечным. Например,

конечное множество из пяти элементов. Число элементов конечного множества является натуральным числом и называется мощностью множества. Множество всех положительных целых чисел бесконечно:

Конечные множества играют особую роль в комбинаторике, которая изучает дискретные объекты. Рассуждения о конечных множествах используют принцип Дирихле, согласно которому не может существовать инъекция из большего конечного множества в меньшее.

конечное множество

2. матем. множество, для которого существует неотрицательное целое число, равное количеству элементов этого множества

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: антиалкогольный — это что-то нейтральное, положительное или отрицательное?

Синонимы к словосочетанию «конечное множество»

Предложения со словосочетанием «конечное множество»

  • Так, закон исключённого третьего, верный для конечных множеств, не действует для бесконечных множеств.
  • Она может «считывать» и «записывать» конечное множество символов — это её алфавит или словарь.
  • Это позволяет при конечном множестве слов выразить бесконечное число смыслов высказываний.
  • (все предложения)

Понятия, связанные со словосочетанием «конечное множество»

В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.

Отправить комментарий

Дополнительно

Предложения со словосочетанием «конечное множество»:

Так, закон исключённого третьего, верный для конечных множеств, не действует для бесконечных множеств.

Она может «считывать» и «записывать» конечное множество символов — это её алфавит или словарь.

Это позволяет при конечном множестве слов выразить бесконечное число смыслов высказываний.

Синонимы к словосочетанию «конечное множество»

Карта слов и выражений русского языка

Онлайн-тезаурус с возможностью поиска ассоциаций, синонимов, контекстных связей и примеров предложений к словам и выражениям русского языка.

Справочная информация по склонению имён существительных и прилагательных, спряжению глаголов, а также морфемному строению слов.

Сайт оснащён мощной системой поиска с поддержкой русской морфологии.

конечное множество — — [http://www.iks media.ru/glossary/index.html?gloss >Справочник технического переводчика

МНОЖЕСТВО — МНОЖЕСТВО, множества, ср. (книжн.). 1. только ед. Неопределенно большое количество, число чего нибудь. Множество рабочих. Множество фактов. «Я слышал в жизни множество отличнейших певцов.» Некрасов. 2. Совокупность элементов, выделенных в… … Толковый словарь Ушакова

Множество второй категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Читайте также:  Электронная почта майкрософт регистрация

Множество первой категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия

Множество — У этого термина существуют и другие значения, см. Множество (значения). Запрос «Целое» перенаправляется сюда; о типе данных в программировании см. Целое (тип данных). Множество одно из ключевых понятий математики, в частности, теории… … Википедия

Конечное — то, что имеет предел, границу, конец. В философии понятие К. используется как категория, характеризующая всякий определённый, ограниченный объект (вещь, процесс, явление, состояние, свойство и т. д.). Каждый познаваемый объект… … Большая советская энциклопедия

Разрешимое множество — В теории множеств, теории алгоритмов и математической логике, множество натуральных чисел называется разрешимым или рекурсивным, если существует алгоритм, который, получив на вход любое натуральное число, через конечное число шагов завершается и… … Википедия

Дескриптивное множество — Дескриптивное множество конечное множество, каждому элементу которого поставлено в соответствие неотрицательное число («вес»)[1]. В случае фиксированного для определённого исследования элементов дескриптивного множества, можно использовать… … Википедия

Перечислимое множество — Не следует путать с счётным множеством. В теории множеств, теории алгоритмов и математической логике, перечислимое множество (эффективно перечислимое, рекурсивно перечислимое, полуразрешимое множество[1]) множество конструктивных объектов… … Википедия

Арифметическое множество — В теории множеств и математической логике, множество натуральных чисел называется арифметическим, если оно может быть определено формулой в языке арифметики первого порядка, то есть если существует такая формула с одной свободной переменной что… … Википедия

Мощность (кардинальное число) множества – такое свойство множества, которое остается после абстрагирования от качества (состава) его элементов (определение мощности по Кантору). Мощность множества А обозначается | А | или gard A.

Любые два множества А и В называются равномощными (эквивалентными), если между их элементами может быть установлено взаимно однозначное соответствие, т.е. существует взаимно однозначная функция f: A → B с областью определения А и множеством (областью) значений В. Таким образом, можно сказать, что мощность – это то общее, что есть у всех эквивалентных множеств. Понятие мощности введено Кантором для количественного сравнения различных множеств. С точки зрения правил сравнения (выявления общего), все множества делятся на конечные и бесконечные. В свою очередь бесконечные множества делятся на счетные и континуальные .

Конечное множество – множество, содержащее конечное число элементов; мощность n-элементного множества А равна числу его элементов, т.е. | А | = n; множество, не содержащее ни одного элемента, называется пустым множеством и обозначается Æ; пустое множество является подмножеством любого множества и имеет нулевую мощность (| Æ | = 0). Из определения конечного множества следует – любые два конечные множества с одинаковым (равным) числом элементов эквивалентны (между ними легко установить взаимно однозначное соответствие – для этого достаточно, например, ввести нумерацию элементов).

Читайте также:  Cortland sth 5000 отзывы

Одна из особенностей конечного множества заключается в том, что его всегда можно задать путем перечисления элементов. Ясно, что это не всегда удобно (когда число элементов велико), но довольно часто другие способы просто неприемлемы. Последнее относится, например, к ситуации, когда нужно описать подмножество студентов, объединенных в определенную группу (поток). Очевидно, в этом случае придумать какое-то свойство или порождающую функцию, позволяющие однозначно выделить группу студентов из всего множества студентов вуза (факультета), практически невозможно (да в этом и нет необходимости – достаточно составить список студентов).

Бесконечное множество – всякое множество А, имеющееправильную часть В, равномощную всему ( целому ) множеству А , т. е. В Ì А и |В| = |А|. Так, например, множество М квадратов натуральных чисел является правильной частью всего множества N натуральных чисел (взаимно однозначное соответствие между этими множествами очевидно); следовательно, оба эти множества обладают одинаковой мощностью и подпадают под определение бесконечных множеств. В то же время это определение не подходит к конечным множествам, так как мощность (число элементов) правильной части любого конечного множества всегда меньше мощности полного множества.

Счетное множество – любое бесконечное множество, равномощное множеству N натуральных чисел. Мощность счетного множества принято обозначать (алеф – нуль). Отличительная особенность счетного множества – все его элементы могут быть пронумерованы. И хотя любое конечное множество также обладает этой особенностью, оно, по определению, к счетным множествам не относится. Примеры часто встречающихся счетных множеств: любые бесконечные подмножества множества N натуральных чисел; множества целых и рациональных чисел и их бесконечные подмножества (одним из таких подмножеств является, в частности, множество N );

множества, составленные из элементов бесконечных числовых последовательностей как функций натурального аргумента (если эти множества после исключения одинаковых элементов не трансформируются в конечные ).

Замечание. С возможностью нумерации элементов счетного множества связан тот факт, что довольно часто такого рода множества описываются посредством перечисления элементов. Это характерно, например, при задании (описании) бесконечных числовых последовательностей и рядов, когда по записанным нескольким первым членам последовательности (ряда) видна закономерность их изменения и, как следствие, запись последующих членов с помощью выявленной закономерности не вызывает затруднений. Простейшей иллюстрацией к вышесказанному могут служить применяемые на практике описания множеств натуральных и целых чисел, а именно:

Читайте также:  Как проверить слово употребления букву е

Континуальное множество – любое бесконечное множество, равномощное множеству R действительных чисел. Говорят, что всякое континуальное множество имеет мощность континуума. Такой мощностью обладают, например:

множество всех подмножеств всякого счетного множества;

множество точек, принадлежащих некоторой прямой или поверхности;

множество всех действительных чисел некоторого интервала ( a,b ) или отрезка [ a,b ] (см. пример1.2).

В отличие от счетного множества,элементы континуального множества не могут быть пронумерованы, т.е. множество-континуум несчетно. Справедливость данного утверждения подтверждается теоремой Кантора, одно из доказательств которой представлено ниже.

Теорема Кантора. Множество действительных чисел отрезка [0,1] несчетно.

→ Докажем теорему методом от противного. Для этого предположим, что множество счетно, т.е. может быть пронумеровано. Расположим все числа, изображенные бесконечными десятичными дробями, в порядке их нумерации:

Рассмотрим любую бесконечную дробь , у которой . Эта дробь не может войти в указанную последовательность, так как от первого числа она отличается первой цифрой, от второго – второй цифрой и т.д.

Геометрическая интерпретация множеств. Для геометрического (графического) изображения множеств и их свойств (связей между ними) довольно часто используются так называемые диаграммы Эйлера-Венна, представляющие собой в общем случае некоторый прямоугольник на плоскости и вложенные в него круги.

Так, если в рамках конкретно решаемой задачи рассматривается некая система S = <A,B,C,…,G>частных множеств, то кругами (круги Эйлера), находящимися внутри прямоугольника, изображаются любые множества из S, а прямоугольником – некоторое фиксированное универсальное множество (множество-универсум) U, включающее в себя в качестве подмножеств всю систему S частных множеств, т.е.

" МÎ S : M Ì U. При этом каждое множество мыслится как множество точек, принадлежащих изображающему его кругу Эйлера.

Замечание. Ясно, что множество-универсум U должно быть либо задано, либо очевидно из контекста задачи. Так, для S = <A, B, С >, где

в качестве универсального множества можно использовать как весь латинский алфавит, так и множество U = <a,b,c,d,e,f,g>. Круги, иллюстрирующие множества А и В на рисунке, пересекаются, так как эти множества имеют общие элементы.

Геометрическая иллюстрация множеств

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10236 – | 7597 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector