No Image

Что понимают под одноранговой лвс

0 просмотров
11 марта 2020

Локальная вычислительная сеть (ЛВС) включает абонентов, расположенных в пределах небольшой территории. К классу локальных вычислительных сетей относятся сети отдельных предприятий, фирм, банков и т.д. Протяженность такой сети обычно ограничена пределами 2 – 2,5 км.

Одним из важных критериев классификации сетей является классификация по модели взаимодействия.

Модель клиент – сервер.Под сервером понимают:

1.Узловой компьютер в сети, предоставляющий свои услуги и сервисы другим, т.е. выполняющий определенные функции по запросам пользователей сети.

2.Программа-сервер. Она устанавливается на компьютере-сервере.

Обслуживаемые компьютеры общаются с сервером посредством соответствующей клиент – программы, предназначенной для работы в паре с программой-сервером.

Программа – клиент работает непосредственно на рабочей станции. Рабочая станция – это сетевой компьютер, с которого пользователь имеет доступ к сетевым сервисам и ресурсам.

Под клиентом понимаются:

2.Прикладная программа, работающая в интересах пользователя для предоставления определённых услуг с сервера в какой-либо сети.

Клиент-сервер – это технология работы различных программ в сети. Программа, работающая по такой схеме, состоит их двух взаимодействующих частей: клиента и сервера. Сервер по командам клиента выполняет определенные действия, предоставляя услуги клиенту. То есть для предоставления услуг в такой схеме необходимы наличие и одновременная слаженная работа обеих указанных частей.

По уровню управления локальные сети делятся наодноранговые и двуранговые.

Одноранговые сети. В такой сети нет единого центра управления взаимодействием рабочих станций и нет единого устройства для хранения данных. Сетевая операционная система распределена по всем рабочим станциям. В одноранговой сети (peer-to-peer network) все компьютеры равноправны – каждый из компьютеров может быть и сервером, и клиентом. Пользователь каждого из компьютеров сам решает, какие ресурсы будут предоставлены в общее пользование и кому.

Компьютеры в одноранговых сетях организуются в рабочие группы (workgroups). Одноранговые сети, как правило, небольшие – расстояние по кабелю от 2 до 10 компьютеров. В такой сети обычно нет лица, ответственного за настройку и поддержку политики безопасности сети – администратора (network administrator). В одноранговой сети каждый пользователь ведет свою собственную политику безопасности, определяя, каким образом другие пользователи могут использовать его ресурсы, находящиеся в сетевом доступе.

Политика безопасности (security policy) – это совокупность настроек, определяющая права пользователей сети на доступ к общим ресурсам. По мере добавления новых компьютеров в рабочую группу, она становится трудно управляемой, так как управление политикой безопасности децентрализовано. Например, в сети из 7 компьютеров необходимо вести 7 отдельных политик безопасности, чтобы поддерживать работу 7 пользователей. По результатам исследований компании Novell пороговое число компьютеров в одноранговой сети – 25.

Примером операционных систем для одноранговых стей являются все версии WINDOWS 9X, WINDOWS 2000, WINDOWS XP.

К достоинствам таких сетей можно отнести низкую стоимость и высокую надёжность. К недостаткам – относятся:

– слабая защита информации;

– сложность управления сетью;

– зависимость эффективности работы от числа станций.

Двуранговые сети (сети клиент/сервер). Наиболее характерной особенностью сети клиент/сервер является централизованное управление сетью. Такая сеть имеет хотя бы один выделенный сервер, который управляет пересылкой сообщений между объектами сети и всеми связями между сетевыми устройствами, хранит разделяемые информационные ресурсы, управляет политикой безопасности. На нём устанавливается серверное ядро сетевой операционной системы. Как правило, сервер – это самый мощный компьютер специального, серверного исполнения, имеющий при необходимости высоконадёжную внешнюю память (RAID – массивы).

Модель клиент/сервер значительно упрощает задачи администрирования сети, однако требует специалиста, который будет поддерживать работу сети. Сеть клиент/сервер обладает большей безопасностью, чем одноранговая сеть. Чтобы зарегистрироваться в системе, пользователь должен знать свои учётные данные (имя пользователя и пароль), созданные на сервере. Когда пользователь успешно зарегистрировался, он автоматически получает доступ ко всем ресурсам сети, на которые у него есть права. Сетевой администратор может присвоить права доступа как отдельному пользователю, так и группе пользователей.

Достоинства сети с выделенным сервером:

– надёжная система защиты информации;

– отсутствие ограничений на число рабочих станций.
Недостатком таких сетей является их высокая стоимость.

Примером операционных систем для двуранговых сетей являются все версии WINDOWS NT, WINDOWS 2000/2003 Server фирмы Microsoft, а также операционная система Novell NetWare фирмы Novell.

Под сервером понимают:

1.Компьютер в сети, предоставляющий свои услуги другим, т.е. выполняющий определенные функции по запросам других.

2.Программа-сервер.Она устанавливается на компьютере-сервере.

Обслуживаемые компьютеры общаются с сервером посредством соответствующей (client-) программы, предназначенной для работы в паре с программой-сервером. Программа клиент работает непосредственно на рабочей станции.

Клиент. Под клиентом понимаются:

2.Прикладная программа, работающая в интересах пользователя для предоставления неких услуг с сервера где-либо в какой-либо сети.

Клиент-сервер – это технология работы различных программ в сети. Программа, работающая по такой схеме, состоит их двух взаимодействующих частей: клиента и сервера. Клиент находится на машине пользователя, сервер на соответствующем сервере (компьютере). Сервер по командам клиента выполняет определенные действия, предоставляя услуги клиенту. Т.е., для предоставления услуг в такой схеме необходимы наличие и одновременная слаженная работа обеих указанных частей.

Предоставление услуг в Internet построено по этой схеме, т.е. оно осуществляется совместной работой 2-х процессов: на компьютере пользователя и на компьютере сервере.

3. Выполнить поиск в Internet по темам:

основные особенности архитектуры современных ПК;

тема выбирается из предлагаемого списка;

тема поиска выбирается самостоятельно.

В поисковой системе, например, Яндекс ввести тему поиска в поисковой строке. Нажать кнопку Найти.

Из предложенного списка, учитывая аннотации выбрать нужные ссылки

Как правило, ссылки располагаются в порядке совпадения с содержимым поисковой строки, то есть ссылки, расположенные выше по списку могут содержать информацию более полно совпадающую с предметом поиска.

Таким образом найдена информация по запросу Основные особенности архитектуры современных ПК.

КЛАССИЧЕСКАЯ АРХИТЕКТУРА ПК. ОСНОВНЫЕ ОСОБЕННОСТИ АРХИТЕКТУРЫ СОВРЕМЕННЫХ ПК

Несмотря на то что современные модели компьютеров представлены на рынке широким спектром брендов, собраны они в рамках небольшого количества архитектур. С чем это связано? Какова специфика архитектуры современных ПК? Какие программные и аппаратные компоненты ее формируют?

Что такое архитектура ПК? Под этим довольно широким термином принято понимать совокупность логических принципов сборки компьютерной системы, а также отличительные особенности технологических решений, внедряемых в нее.

Архитектура ПК может быть инструментом стандартизации. То есть компьютеры в рамках нее могут собираться согласно установленным схемам и технологическим подходам. Объединение тех или иных концепций в единую архитектуру облегчает продвижение модели ПК на рынке, позволяет создавать программы, разработанные разными брендами, но гарантированно подходящие для нее.

Единая архитектура ПК также позволяет производителям компьютерной техники активно взаимодействовать на предмет совершенствования тех или иных технологических компонентов ПК. Под рассматриваемым термином может пониматься совокупность подходов к сборке компьютеров или отдельных его компонентов, принятых на уровне конкретного бренда. В этом смысле архитектура, которая разработана производителем, является его интеллектуальной собственностью и используется только им, может выступать конкурентным инструментом на рынке. Но даже в таком случае решения от разных брендов иногда могут быть классифицированы в рамках общей концепции, объединяющей в себе ключевые критерии, которые характеризуют компьютеры различных моделей.

Читайте также:  Доступ к файлу ftp net

Термин «архитектура ПК» информатика как отрасль знаний может понимать по-разному. Первый вариант трактовки предполагает интерпретацию рассматриваемого понятия как стандартизирующего критерия. В соответствии с другой интерпретацией архитектура — это, скорее, категория, позволяющая одному бренду-производителю стать конкурентным в отношении других. Интереснейший аспект — то, как соотносятся история и архитектура ПК. В частности, это появление классической логической схемы конструирования компьютеров. Рассмотрим ее особенности.

Классическая архитектура компьютера

Ключевые принципы, в соответствии с которыми предполагалось конструирование ПК по определенной логической схеме, предложил Джон фон Нейман, выдающийся математик. Его идеи были реализованы производителями ПК, относящихся к первым двум поколениям. Концепция, разработанная Джоном фон Нейманом, — это классическая архитектура ПК. Каковы ее особенности? Предполагается, что компьютер должен состоять из следующих основных компонентов: – арифметического и логического блока; – устройства для управления; – блока внешней памяти; – блока оперативной памяти; – устройств, предназначенных для ввода и вывода информации. В рамках данной схемы взаимодействие технологических компонентов должно реализовываться по конкретной последовательности. Так, сначала в память ПК попадают данные из компьютерной программы, которые могут вводиться с помощью внешнего устройства. Затем устройство для управления считывает информацию из памяти компьютера, после чего направляет ее на выполнение. В этом процессе при необходимости задействуются остальные компоненты ПК.

Архитектура современных компьютеров

Рассмотрим, каковы основные особенности архитектуры современных ПК. Она несколько отличается от концепции, которую мы изучили выше, но во многом продолжает ее. Ключевая особенность ПК новейших поколений — арифметический, логический блок, а также то, что устройства для управления объединены в единый технологический компонент — процессор. Во многом это стало возможным благодаря появлению микросхем и дальнейшему их совершенствованию, что позволило уместить в сравнительно небольшой детали компьютера широкий спектр функций. Архитектура современного ПК также характеризуется тем, что в ней присутствуют контроллеры. Они появились как результат пересмотра концепции, в рамках которой процессор должен был выполнять функцию обмена данными с внешними устройствами. Благодаря возможностям появившихся интегральных схем соответствующий функциональный компонент производители ПК решили отделить от процессора. Так появились различные каналы обмена, а также периферийные микросхемы, которые затем начали называться контроллерами. Соответствующие аппаратные компоненты на современных ПК могут, например, управлять работой дисков.

Устройство и архитектура ПК современных образцов предполагают использование шины. Основное ее назначение — обеспечение коммуникаций между различными аппаратными элементами компьютера. Ее структура может предполагать наличие специализированных модулей, отвечающих за ту или иную функцию.

тема выбирается из предлагаемого списка;

n) Рецепт самодельных чернил для струйных принтеров

Локальные вычислительные сети

Локальной вычислительной сетью (ЛВС) называют сеть, элементы которой — вычислительные машины (в том числе мини- и микрокомпьютеры), терминалы, связная аппаратура — располагаются на сравнительно небольшом удалении друг от дру­га (до 10км).

Локальная сеть обычно предназначается для сбора, передачи, рассредоточенной и распределенной обработки информации в пределах одной лаборатории, отдела, офиса или фирмы, часто специализируется на выполнении определенных функций в соответствии с профилем деятельности фирмы и отдельных ее подразделений. Во многих случаях ЛВС, обслуживающая свою локальную информационную систему, связана с другими вычислительными сетями, внутренними или внешними, вплоть до региональных или глобальных сетей.

Основное назначение любой вычислительной сети — предоставление информационных и вычислительных ресурсов подключенным к ней пользователям.

Связь ЛВС с сетью Интернет может выполняться через хост-компьютер, в качестве какового может использоваться web-сервер или сервер-шлюз (часто именуемый прокси-сервером)— рабочая станция, имеющая специализированное программное обеспечение для непосредственной работы в Интернете, например программы Easy Proxy, WinProxy, WinGate 2 .

Виды локальных вычислительных сетей

Локальные вычислительные сети можно классифицировать по целому ряду признаков (рис. 12.1).

1 Локальные вычислительные сети — единственный вид сетей, в которых вычислительные процессы могут превалировать над информационными, поэтому прилагательное «вычислительные» здесь уместно. Хотя даже из приведенной ниже классификации видно, что чаще всего это не так.

2 Классический прокси-сервер поддерживает функцию буфера для временного хранения передаваемых данных, так что при повторном запросе данных, еще хранимых на сервере, их не нужно искать снова, а можно прямо воспользоваться хранимой копией. Более того, если связь с сетью прервется, прокси-сервер будет продолжать работать.

Классификация ЛВС

Уровень управления Назначение сети Топология сети Однородность сети
• Сети рабочих групп • Вычислительные сети • Шина • Однородные сети
• Сети отделов • Информационно-вычислительные • Петля • Неоднородные сети
• Сети кампусов • Информационные сети • Звезда (радиальная)
Равноправность узлов сети
• Корпоративные сети • Информационно-поисковые сети • Полносвязная
• Информационно-советующие сети • Иерархическая • Серверные сети
• Информационно-управляющие сети • Смешанная • Одноранговые сети

Рис. 12.1. Классификация локальных вычислительных сетей

Существует параллельная классификация вычислительных сетей, в которой локальные сети определены несколько иначе: локальной сетью считается компьютерная сеть, обслуживающая нужды одного предприятия, одной корпорации. Среди таких вычислительных сетей выделяют:

Локальные сети рабочих групп,обычно объединяют ряд ПК, работающих под управлением одной операционной среды. В ряду компьютеров часто выделяются специализированные серверы, предназначенные для выполнения функций файлового сервера, сервера печати, факс-сервера.

Локальные сети отделовиспользуются небольшой группой сотрудников предприятия, работающих в одном отделе (отдел кадров, бухгалтерия, отдел маркетинга и т. п.). В отделе может насчитываться до сотни компьютеров. Чаще всего такая сеть имеет несколько выделенных серверов, специализированных для таких ресурсов, как программы-приложения, базы данных, лазерные принтеры, модемы и т. д. Такие сети, как правило, используют одну сетевую технологию и также одну (максимум две) операционную систему. Территориально они чаще всего расположены и в одном здании.

Сети кампусовполучили название от слова campus — студенческий городок. Ос­новное назначение этих сетей — объединение нескольких мелких сетей в одну. Сети кампусов могут занимать значительные территории и объединять много разнородных сетей. Основное назначение этих сетей — обеспечить взаимодействие между сетями отделов и рабочих групп и создать доступ к базам данных предприятия и другим дорогостоящим сетевым ресурсам. На уровне сети кампуса решаются мно­гие проблемы интеграции неоднородного программного и технического обеспече­ния. Ресурсы глобальной сети Интернет сети кампусов не используют.

Читайте также:  Уровень шума дба или дб

Корпоративные сети— сети масштаба всего предприятия, корпорации. Они могут охватывать большие территории, вплоть до работы на нескольких континентах. Ввиду высокой стоимости индивидуальных выделенных коммуникаций и плохой защищенности от несанкционированного доступа коммутируемых каналов связи они чаще всего используют коммуникационные возможности Интернета, и поэтому территориальное размещение для таких сетей роли не играет. Корпоративные сети относят к особой разновидности локальных сетей, имеющих значительную территорию охвата. Ввиду быстрого развития и больших перспектив корпоративных сетей они рассмотрены в отдельном разделе.

По назначению ЛВС их можно разделить на следующие:

вычислительные, выполняющие преимущественно расчетные работы;

– информационно-вычислительные, кроме расчетных выполняющие работу по информационному обслуживанию пользователей;

– информационные, выполняющие в основном информационное обслуживание пользователей (создание и оформление документов, доставку пользователю директивной, текущей, справочной и другой нужной ему информации);

– информационно-поисковые — разновидность информационных, специализирующуюся на поиске информации в сетевых хранилищах по нужной пользователю тематике;

– информационно-советующие, обрабатывающие текущую организационную, техническую и технологическую информацию и вырабатывающие результирующую информацию для поддержки принятия пользователем правильных решений;

– информационно-управляющие, обрабатывающие текущую техническую и технологическую информацию и вырабатывающие результирующую информацию, на базе которой автоматически вырабатываются воздействия на управляемую систему и т. д.

По количеству подключенных к сети компьютеров сети можно разделить на малые, объединяющие до 10-15 машин, средние — до 50 машин и большие — свыше 50 машин.

По территориальной расположенности ЛВС делятся на компактно размещенные (все компьютеры расположены в одном помещении) и распределенные (компью­теры сети размещены в разных помещениях).

По пропускной способности ЛВС делятся на три группы:

– ЛВС с малой пропускной способностью (скорости передачи данных в пределах до десятка мегабит в секунду), использующие чаще всего в качестве каналов связи тонкий коаксиальный кабель или витую пару;

– ЛВС со средней пропускной способностью (скорости передачи данных несколько десятков мегабит в секунду), использующие чаще всего в качестве каналов связи толстый коаксиальный кабель или экранированную витую пару;

– ЛВС с большой пропускной способностью (скорости передачи данных сотни и даже тысячи мегабит в секунду), использующие чаще всего в качестве каналов связи волоконно-оптические кабели.

По топологии ЛВС делятся на шинные, петлевые, радиальные, полносвязные, иерархические и смешанные.

По типам используемых компьютеров они делятся на однородные и неоднородные. В однородных ЛВС используются одинаковые типы компьютеров, имеющие одинаковые операционные системы и однотипный состав абонентских средств. В однородных сетях значительно проще выполнять многие распределенные информаци­онные процедуры (в качестве классического примера можно назвать организацию и использование распределенных баз данных).

По организации управления ЛВС делятся на:

– ЛВС с централизованным управлением;

– ЛВС с децентрализованным управлением.

Об этих классах ЛВС поговорим немного подробнее.

В ЛВС наиболее важными (видимыми) для пользователя являются два структурно-функциональных звена: рабочие станции и серверы. Не все ЛВС имеют в своем составе выделенные серверы, в некоторых случаях функции сервера оказываются как бы распределенными между рабочими станциями сети. С этой точки зрения и можно говорить о двух типах ЛВС:

– без централизованного управления;

– с централизованным управлением.

Одноранговые локальные сети

В сетях без централизованного управления (часто их называют одноранговыми сетями— peer-to-peer) нет единого центра управления взаимодействием рабочих станций и нет единого устройства для хранения данных. Функции управления сетью передаются от одной станции к другой. Сетевая операционная система распределена по всем рабочим станциям (на каждом компьютере должны быть программные средства администрирования сетью). Каждая станция сети может выполнять функции, как клиента, так и сервера. Она может обслуживать запросы от других рабочих станций и направлять свои запросы на обслуживание в сеть. Пользователю сети доступны все периферийные устройства, подключенные к другим станциям (магнитные и оптические диски, принтеры, сканеры, плоттеры и т. д.). Но отсутствие серверов в сети не позволяет администратору централизованно управлять ресурсами. Каждый компьютер, включенный в одноранговую сеть, имеет свои собственные сетевые программные средства, а необходимость прямого взаимодействия компьютеров друг с другом по мере расширения системы приводит к слишком большому количеству связей между рабочими станциями. Эффективно управлять такой системой практически невозможно.

Достоинства одноранговых сетей:

Недостатки одноранговых сетей:

– возможность подключения небольшого числа рабочих станций (не более 10);

– сложность управления сетью;

– трудности обновления и изменения программного обеспечения станций;- сложность обеспечения защиты информации.

Одноранговые сети создаются на базе таких сетевых операционных систем, как Artisoft LANtastic, Novell NetWare Lite, оболочки MS Windows for Workgroups.

Существует два подхода к организации сетевого программного обеспечения. ЛВС подразделяются на два кардинально различающихся класса: одноранговые (одноуровневые) сети и иерархические (многоуровневые).

При работе в сети компьютер может предоставлять свои ресурсы сетевым пользователям (сервер), а может осуществлять доступ к сетевым ресурсам (клиент).

Одноранговые сети

Одноранговая сеть представляет собой сеть равноправных компьютеров (равные права доступа к ресурсам друг друга). Функции управления сетью передаются по очереди от одной станции к другой. Как правило, рабочие станции имеют доступ к дискам других станций. Целесообразно использовать одноранговые сети, если идет интенсивный обмен данными между станциями.

В одноранговых сетях все компьютеры равны в правах доступа к ресурсам друг друга. Каждый пользователь может по своему желанию объявить какой-либо ресурс своего компьютера разделяемым, после чего другие пользователи могут его эксплуатировать. В таких сетях на всех компьютерах устанавливается одна и та же ОС, которая предоставляет всем компьютерам в сети потенциально равные возможности.

В одноранговых сетях также может возникнуть функциональная несимметричность: одни пользователи не желают разделять свои ресурсы с другими, и в таком случае их компьютеры выполняют роль клиента. За другими компьютерами администратор закрепил только функции по организации совместного использования ресурсов, а, значит, они являются серверами. В третьем случае, когда локальный пользователь не возражает против использования его ресурсов и сам не исключает возможности обращения к другим компьютерам, ОС, устанавливаемая на его компьютере, должна включать и серверную, и клиентскую части. В отличие от сетей с выделенными серверами, в одноранговых сетях отсутствует специализация ОСв зависимости от преобладающей функциональной направленности – клиента или сервера. Все вариации реализуются средствами конфигурирования одного и того же варианта ОС.

Достоинство одноранговой сети – простота обслуживания (это функции системного администратора). Однако эти сети применяются в основном для объединения небольших групп пользователей, не предъявляющих больших требований к объемам хранимой информации, ее защищенности от несанкционированного доступа и к скорости доступа.

Иерархические сети

При повышенных требованиях к этим характеристикам более подходящими являются двухранговые сети (иерархические, с выделенным сервером), где сервер лучше решает задачу обслуживания пользователей своими ресурсами, так как его аппаратура и сетевая операционная система специально спроектированы для этой цели.

Читайте также:  Чем отличается программист от системного программиста

Тип сервера определяется множеством задач, для решения которых он предназначен:

· сервер файлов – хранение данных и управление доступом к ним

· сервер печати – управление принтером и доступом к нему

· сервер служб безопасности – обеспечивает функционирование системы защиты ресурсов, хранит информацию об устройствах и пользователях

· сервер приложений – выполняет вычисляющие части клиент-серверных приложений

· почтовый сервер – отвечает за функционирование электронной почты.

Топология ЛВС

Топология (topos – место, logos – учение) – это раздел математики, изучающий способы соединения различных сущностей. Применительно к компьютерным сетям это способы соединения элементов сети.

Топология ЛВС – это конфигурация графа, вершины которого это компьютеры или иное оборудование, дуги – физические связи между ними.

Конфигурация физических связей определяется электрическими соединениями. Она может отличаться от конфигурации логических связей, которые определяются маршрутами передачи данных путем настройки коммуникационного оборудования.

Выбор той или иной топологии влияет на состав оборудования, на методы управления сетью, на возможности расширения сети.

Пассивная топология та, в которой устройства не регенерируют сигнал, переданный источником. Примером являются топологии шина и звезда. В активной топологии устройства регенерируют не предназначенный им сигнал и передают его дальше. Примером активной топологии является кольцо.

Рис. 1 Базовые топологии

Общая шина

В сети с шинной топологией (рис. 1, а) все устройства объединены единой средой передачи. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети. Передаваемая информация может распространяться в обе стороны. Пропускная способность канала связи делится между всеми узлами сети.

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

Благодаря тому, что рабочие станции можно включать без прерывания сетевых процессов и коммуникационной среды, очень легко прослушивать информацию, т.е. ответвлять информацию из коммуникационной среды.

Плюсы: низкая стоимость и простота разводки, не требуется дополнительное оборудование.

Минусы: низкая надежность и производительность. Дефект кабеля или разъема парализует всю сеть.

Звезда

Концепция топологии сети в виде звезды (рис. 1, б) пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети. Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии. При расширении вычислительных сетей к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая, по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального узла. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

Центральный узел управления может реализовать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Плюсы: более высокая пропускная способность, простота подключения новых узлов, более высокая защищенность от прослушивания.

Минусы: зависимость работоспособности от состояния центра, высокий расход кабеля, более высокая стоимость.

Кольцо

При кольцевой топологии сети (рис. 1, в) рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо. В настоящее время вместо попарного соединения используется центральное устройство, внутри которого реализована топология кольцо. Это устройство может быть активным и регенерировать сигнал, а может быть просто коммутатором.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Минусы: низкая отказоустойчивость, разрыв сети для добавления узлов.

Таблица 2. Характеристики топологий вычислительных сетей

Характеристика Топология
Шина Звезда Кольцо
Стоимость расширения Средняя Незначительная Средняя
Присоединение абонентов Пассивное Пассивное Активное
Защита от отказов Высокая Незначительная Незначительная
Размеры системы Ограниченны Любые Любые
Защищенность от прослушивания Незначительная Хорошая Хорошая
Поведение системы при высоких нагрузках Плохое Хорошее Удовлетворительное
Возможность работы в реальном режиме времени Плохая Очень хорошая Хорошая
Разводка кабеля Хорошая Удовлетворительная Удовлетворительная

Звездообразные топологии занимают лидирующие позиции в локальных сетях.

На шинной топологии основано соединение большинства системных компонентов во внутренней архитектуре компьютера.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector