- Число е – это не просто число
- Понятие экспоненциального роста
- Приглядимся поближе
- Свойства
- История
- Способы запоминания
- Доказательство иррациональности
- Интересные факты
- Содержание
- Способы определения [ править ]
- Свойства [ править ]
- История [ править ]
- Мнемоника [ править ]
- Доказательство иррациональности [ править ]
Число e всегда волновало меня — не как буква, а как математическая константа. Что число е означает на самом деле?
Разные математические книги и даже моя горячо любимая Википедия описывает эту величественную константу совершенно бестолковым научным жаргоном:
Математическая константа е является основанием натурального логарифма.
Если заинтересуетесь, что такое натуральный логарифм, найдете такое определение:
Натуральный логарифм, ранее известный как гиперболический логарифм, является логарифмом с основанием е, где е – иррациональная константа, приблизительно равная 2.718281828459.
Определения, конечно, правильные. Но понять их крайне сложно. Конечно, Википедия в этом не виновата: обычно математические пояснения сухи и формальны, составляются по всей строгости науки. Из-за этого новичкам сложно осваивать предмет (а когда-то каждый был новичком).
С меня хватит! Сегодня я делюсь своими высокоинтеллектуальными соображениями о том, что такое число е, и чем оно так круто! Отложите свои толстые, наводящие страх математические книжки в сторону!
Число е – это не просто число
Описывать е как «константу, приблизительно равную 2,71828…» — это все равно, что называть число пи «иррациональным числом, приблизительно равным 3,1415…». Несомненно, так и есть, но суть по-прежнему ускользает от нас.
Число пи — это соотношение длины окружности к диаметру, одинаковое для всех окружностей. Это фундаментальная пропорция, свойственная всем окружностям, а следовательно, она участвует в вычислении длины окружности, площади, объема и площади поверхности для кругов, сфер, цилиндров и т.д. Пи показывает, что все окружности связаны, не говоря уже о тригонометрических функциях, выводимых из окружностей (синус, косинус, тангенс).
Число е является базовым соотношением роста для всех непрерывно растущих процессов. Число е позволяет взять простой темп прироста (где разница видна только в конце года) и вычислить составляющие этого показателя, нормальный рост, при котором с каждой наносекундой (или даже быстрее) всё вырастает еще на немного.
Число е участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов, и много-много других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.
Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).
Так что число е – это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.
Понятие экспоненциального роста
Давайте начнем с рассмотрения базовой системы, которая удваивается за определенный период времени. Например:
- Бактерии делятся и «удваиваются» в количестве каждые 24 часа
- Мы получаем вдвое больше лапшинок, если разламываем их пополам
- Ваши деньги каждый год увеличиваются вдвое, если вы получаете 100% прибыли (везунчик!)
И выглядит это примерно так:
Деление на два или удваивание – это очень простая прогрессия. Конечно, мы можем утроить или учетверить, но удваивание более удобно для пояснения.
Математически, если у нас есть х разделений, мы получаем в 2^x раз больше добра, чем было вначале. Если сделано только 1 разбиение, получаем в 2^1 раза больше. Если разбиений 4, у нас получится 2^4=16 частей. Общая формула выглядит так:
Другими словами, удвоение – это 100% рост. Мы можем переписать эту формулу так:
Это то же равенство, мы только разделили «2» на составные части, которыми в сущности и является это число: начальное значение (1) плюс 100%. Умно, да?
Конечно, мы можем подставить и любое другое число (50%, 25%, 200%) вместо 100% и получить формулу роста для этого нового коэффициента. Общая формула для х периодов временного ряда будет иметь вид:
Это просто означает, что мы используем норму возврата, (1 + прирост), «х» раз подряд.
Приглядимся поближе
Наша формула предполагает, что прирост происходит дискретными шагами. Наши бактерии ждут, ждут, а потом бац!, и в последнюю минуту они удваиваются в количестве. Наша прибыль по процентам от депозита магическим образом появляется ровно через 1 год. На основе формулы, написанной выше, прибыль растет ступенчато. Зеленые точки появляются внезапно.
Но мир не всегда таков. Если мы увеличим картинку, мы увидим, что наши друзья-бактерии делятся постоянно:
Зеленый малый не возникает из ничего: он медленно вырастает из синего родителя. После 1 периода времени (24 часа в нашем случае), зеленый друг уже полностью созрел. Повзрослев, он стает полноценным синим членом стада и может создавать новые зеленые клеточки сам.
Эта информация как-то изменит наше уравнение?
Не-а. В случае с бактериями, полусформированные зеленые клетки все же не могут ничего делать, пока не вырастут и совсем не отделятся от своих синих родителей. Так что уравнение справедливо.
Число e может быть определено несколькими способами.
- Через предел:
(второй замечательный предел).
- Как сумма ряда:
или
.
- Как единственное число a, для которого выполняется
- Как единственное положительное число a, для которого верно
Свойства
Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравненияявляется функция
, где c — произвольная константа.
- Число eиррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 годуШарлем Эрмитом. Предполагается, что e — нормальное число, то есть вероятность появления разных цифр в его записи одинакова.
, см. формула Эйлера, в частности
История
Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен .
Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).
Предполагается, что автором таблицы был английский математик Отред.
Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:
Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690—1691 годы.
Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.
Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ).
Способы запоминания
- Для получения приблизительного значения нужно выписать подряд цифры, выражающие число букв в словах следующего стишка, и поставить запятую после первого знака: «Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли».
- Стишок:
Два и семь, восемнадцать, Двадцать восемь, восемнадцать, Двадцать восемь, сорок пять, Девяносто, сорок пять.
- Легко запомнить как 2, далее запоминаем 71, потом повторяющиеся 82, 81, 82
- Число e можно запомнить по следующему мнемоническому правилу: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45, 90 и 45 градусов). Стихотворная мнемофраза, иллюстрирующая часть этого правила: «Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой»
- Цифры 45, 90 и 45 можно запоминать как «год победы над фашистской Германией, затем дважды этот год и снова он»
- В другом варианте правила e связывается с президентом СШАЭндрю Джексоном: 2 — столько раз избирался, 7 — он был седьмым президентом США, 1828 — год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем — опять-таки равнобедренный прямоугольный треугольник.
Доказательство иррациональности
Пускай рационально. Тогда
, где
и
целые положительные, откуда
Умножая обе части уравнения на , получаем
Переносим в левую часть:
Все слагаемые правой части целые, следовательно:
— целое
Но с другой стороны
Интересные факты
- В IPO компании 2004 году было объявлено о намерении компании увеличить свою прибыль на 2 718 281 828 долларов. Заявленная цифра представляет собой первые 10 цифр известной математической константы.
- В языках программирования символу e в экспоненциальных записях числовых литералов соответствует число 10, а не Эйлерово число. Это связано с историей создания и использования языка для математических вычислений FORTRAN[2] :
Я начал программировать в 1960 году на FORTRAN II, используя компьютер IBM 1620. В то время, в 60-е и 70-е годы, FORTRAN использовал только заглавные буквы. Возможно, это произошло потому, что большинство старых устройств ввода были телетайпами, работавшими с 5-битовым кодом Бодо, который не поддерживал строчные буквы. Буква E в экспоненциальной записи тоже была заглавной и не смешивалась с основанием натурального логарифма e , которое всегда записывается маленькой буквой. Символ E просто выражал экспоненциальный характер, то есть обозначал основание системы — обычно таким было 10. В те годы программисты широко использовали восьмеричную систему. И хотя я не замечал такого, но если бы я увидел восьмеричное число в экспоненциальной форме, я бы предположил, что имеется в виду основание 8. Первый раз я встретился с использованием маленькой e в экспоненциальной записи в конце 70-х годов, и это было очень неудобно. Проблемы появились потом, когда строчные буквы по инерции перешли в FORTRAN. У нас существовали все нужные функции для действий с натуральными логарифмами, но все они записывались прописными буквами.
Список чисел | |
---|---|
Иррациональные числа ζ(3) – √2 – √3 – √5 – φ – α – e – π – δ |
Играет важную роль в дифференциальном и интегральном исчислении, а также многих других разделах математики.
(e approx) 2,718 281 828 459 045 235 360 287 471 352 662 497 757… [1]
Содержание
Способы определения [ править ]
Число e может быть определено несколькими способами.
Свойства [ править ]
- ( frac
= e^x.)
Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравнения (frac= f(x)) является функция (!f(x) = c e^x), где c — произвольная константа. - Число eиррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 годуШарлем Эрмитом. Предполагается, что e — нормальное число, то есть вероятность появления разных цифр в его записи одинакова.
- (!e^
= cos(x) + i sin(x)), см. формула Эйлера, в частности
(e^ + 1 = 0. ,!) - Ещё одна формула, связывающая числа е и π, т. н. «интеграл Пуассона» или «интеграл Гаусса»:
(intlimits_<-infty>^<infty> e^<-x^2>= sqrt<pi>) - Соотношение между ( pi , ) и ( e , ) выражается через бесконечное произведение:
(frac <pi><2e>= prod limits _^<infty >left [ left( frac <2n+1><2n-1>
ight )^ <2n-1>left ( frac
ight )^ <2n>
ight ] ) - То же через интегральное соотношение:
(frac <pi><2e>= int limits _<0>^<infty > frac) - Для любого комплексного числаz верны следующие равенства:
(e^z=sum_^infty frac<1>z^n=lim_left(1+frac
ight)^n ) - Число e разлагается в бесконечную цепную дробь следующим образом:
(e = [2; ;1, 2, 1, ;1, 4, 1, ;1, 6, 1, ;1, 8, 1, ;1, 10, 1, ldots] ,), то есть
(e = 2+cfrac<1><1 + cfrac<1><2 + cfrac<1><1 + cfrac<1><1 + cfrac<1><4 + cfrac<1><1 + cfrac<1><1 + cfrac<1><6 + cfrac<1><1 + cfrac<1><1 + cfrac<1><8 + ldots>>>>>>>>>>> ) - (e = lim_ frac
<sqrt[n]>.) - Представление Каталана:
(e=2cdotsqrt<frac<4><3>>cdotsqrt[4]<frac<6cdot 8><5cdot 7>>cdotsqrt[8]<frac<10cdot 12cdot 14cdot 16><9cdot 11cdot 13cdot 15>>cdots)
История [ править ]
Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен (10^7cdot,log_<1/e>left(frac
ight) ,!).
Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).
Предполагается, что автором таблицы был английский математик Отред.
Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела: $$lim_ left(1+frac<1>
ight)^n.$$
Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690—1691 годы.
Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.
Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии ( нем. Euler ) [?] .
Мнемоника [ править ]
- Приблизительное значение зашифровано в: «Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли» (то есть 2,718281828459 )
- Запомнить как 2, 71, и повторяющиеся 82, 81, 82
- Мнемоническое правило: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45, 90 и 45 градусов). Стихотворная мнемофраза, иллюстрирующая часть этого правила: «Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой»
- Цифры 45, 90 и 45 можно запоминать как «год победы над фашистской Германией, затем дважды этот год и снова он»
- Правила e связывается с президентом СШАЭндрю Джексоном: 2 — столько раз избирался, 7 — он был седьмым президентом США, 1828 — год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем — опять-таки равнобедренный прямоугольный треугольник.
- С точностью до трёх знаков после запятой через «число дьявола»: нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки): ( <666 over 245>approx 2,718).
- Запоминание e как (frac<666><10 cdot sqrt<666>- 13>).
- Грубое (с точностью до 0,001), но красивое приближение полагает e равным (pi cdot cos <pi over 6>). Совсем грубое (с точностью 0,01) приближение даётся выражением (5 cdot pi — 13).
- «Правило Боинга»: (e approx 4 cdot sin 0,747) даёт неплохую точность 0,0005.
- Формулы Г. Александрова: ( e , approx , 3 , — , sqrt <frac <5><63>>) — дает верные семь первых цифр, а (,e , approx , 3 — frac <93><94>sqrt < frac <3><37>>) вычисляет константу с точностью ( 4,6 , cdot , 10^<-10>).
- Стишки:
Два и семь, восемнадцать, Двадцать восемь, восемнадцать, Двадцать восемь, сорок пять, Девяносто, сорок пять.
Доказательство иррациональности [ править ]
Пускай (!e) рационально. Тогда (!e=p/q), где (!p) и (!q) целые положительные, откуда $$!p=eq$$ Умножая обе части уравнения на (!(q-1)!), получаем $$p(q-1)! = eq! = q!sum_^infty <1over n!>= sum_^infty = sum_^q+sum_^infty$$ Переносим (sum_^q) в левую часть: $$sum_^infty = p(q-1)! — sum_^q$$ Все слагаемые правой части целые, следовательно: $$sum_^infty$$- целое $$sum_^infty ge 1$$ Но с другой стороны $$sum_^infty = sum_^infty = sum_^infty <1over (q+1). (q+m)>Интересные факты [ править ]
- В IPO компании Google в 2004 году было объявлено о намерении компании увеличить свою прибыль на 2 718 281 828 долларов. Заявленная цифра представляет собой первые 10 цифр известной математической константы.
- В языках программирования символу (e) в экспоненциальных записях числовых литералов соответствует число 10, а не Эйлерово число. Это связано с историей создания и использования языка для математических вычислений FORTRAN[2] :
Я начал программировать в 1960 году на FORTRAN II, используя компьютер IBM 1620. В то время, в 60-е и 70-е годы, FORTRAN использовал только заглавные буквы. Возможно, это произошло потому, что большинство старых устройств ввода были телетайпами, работавшими с 5-битовым кодом Бодо, который не поддерживал строчные буквы. Буква E в экспоненциальной записи тоже была заглавной и не смешивалась с основанием натурального логарифма (e), которое всегда записывается маленькой буквой. Символ E просто выражал экспоненциальный характер, то есть обозначал основание системы — обычно таким было 10. В те годы программисты широко использовали восьмеричную систему. И хотя я не замечал такого, но если бы я увидел восьмеричное число в экспоненциальной форме, я бы предположил, что имеется в виду основание 8. Первый раз я встретился с использованием маленькой (e) в экспоненциальной записи в конце 70-х годов, и это было очень неудобно. Проблемы появились потом, когда строчные буквы по инерции перешли в FORTRAN. У нас существовали все нужные функции для действий с натуральными логарифмами, но все они записывались прописными буквами. |