Бит это наименьшая возможная единица информации

Главная ≫ Основы компьютера ≫ Начальные сведения ≫ Что является единицей измерения количества информации?

Опубликовано: 23 мая 2015 г.
4 комментария

Информация окружает нас повсюду. Мы получаем её из человеческой речи, когда слушаем радио или смотрим телевизор, читаем печатную литературу и т. д. Точно так же мы и обмениваемся ей – говорим, пишем, показываем. В этом случае единицами информации для нас можно считать буквы, цифры, звуки, знаки и т. п. Но все это составляет часть человеческого языка, понятного людям. Компьютер же оперирует другими единицами информации, понятными, соответственно, ему – битами.

Содержание:

Самая маленькая единица информации

Бит – это минимально возможная единица информации в цифровой системе.

Обозначается («кодируется») нулём или единицей, или точнее – «логический ноль» и «логическая единица». Почему так? Все очень просто. Компьютер — устройство, работающее при помощи электричества. Соответственно, когда на какой-то (назовём условно) линии передачи или приёма информации ток есть – это «единица» («1»), если нет – «ноль» («0»). Вот в таком виде персональный компьютер (как и другие цифровые системы) обрабатывает и обменивается информацией.

Скорость обработки и разрядность цифровых данных и устройств

Понятно, что, если мы будем обрабатывать данные не по одной линии, а сразу по нескольким, то скорость работы в этом случае резко увеличится. Поэтому, в большинстве случаев цифровые устройства оперируют не с одним битом данных, обрабатывая их последовательно друг за другом, а сразу с несколькими. В этом случае говорят о «разрядности», то есть, сколько разрядов (бит данных) за один раз может обработать цифровое устройство.

Например, если оно за один раз способно обработать 4 бита информации одновременно, то говорят, что устройство «четырехразрядное», а если восемь – то «восьмиразрядное» и т. д. Понятно, что чем больше за единицу времени информации может обработать устройство, тем оно быстрее. Таким образом, «восьмиразрядное» устройство быстрее «четырехразрядного», при условии, что скорость «взятия» данных у них одинаковая.

Разряд несёт ещё и другу функцию, определяя порядковый номер места единицы информации (бита) в передаваемых данных. Нумерация разрядов по принятому стандарту считается справа налево, и счёт ведётся с «нуля», то есть 1-й разряд данных называется «нулевым разрядом», его же принято называть «младшим» разрядом данных, а соответственно 7-й разряд – «старшим».

На сегодняшний день принята следующая терминология для определения единиц информации:

  • 8 бит = 1 байт;
  • 1024 байта = 1 килобайт;
  • 1024 Килобайта = 1 Мегабайт;
  • 1024 Мегабайта = 1 Гигабайт;
  • 1024 Гигабайта = 1 Терабайт.

Скорость передачи данных

Как известно, цифровые устройства не только обрабатывают данные, но также, передают и принимают их через линии связи. В этом случае говорят о скорости передачи информации. Для того, чтобы оценить этот параметр за единицу скорости цифровых данных принимают величину равную одному биту в секунду – «1 Бит/сек».

В старые времена, для сокращения обозначения был введён термин «1 Бод», равный скорости передачи данных в 1 Бит/сек. Также, применяются и величины кратные байту: 1 Килобайт/сек. (1 КБайт/сек.), 1 Мегабайт/сек. (1 МБайт/сек.) и т. д.

Исторически сложилось, что для измерения скорости принято применять не байтовые величины, а битовые! То есть, всегда следует обращать внимание на точную запись этого параметра, например, 100 Килобит/сек и 100 Килобайт/сек – это совершенно разная скорость. В первом случае, данные передавались со скорость 100 000 бит в секунду, а во втором – 800 000 бит в секунду, так как выше уже было сказано, что 1 байт = 8 битам. Это следует чётко понимать, чтобы не путаться в данной терминологии. Например, информация размером в 1 килобайт (т. е. 1024 байта или 1024*8 = 8192 бита) будет передаваться при скорости в линии связи 1 килобит/сек – 8192: 1024 = 8 секунд. Те же самые данные мы получим при скорости в 1 килобайт/сек за 1 секунду. То есть во втором случае скорость передачи данных в 8 раз быстрее.

На сегодняшний день, благодаря внедрению новых линий связи работающих на основе оптоэлектронных технологий, скорость передачи информации возросла в сто и больше раз и составляет: от 1–2 Мбит/сек, до 1 Гбит/сек. для индивидуальных подключений не только в офисе, но уже и дома.

Размер файла

Создайте в Блокноте новый документ, введите в него одну букву «Я» и сохраните документ в папке Мои документы под именем Буква Я.txt. Откройте папку Мои документы, найдите файл Буква Я.txt, щёлкните на нём правой кнопкой мыши и выберите в открывшемся контекстном меню команду Свойства. Откроется диалоговое окно Свойства: Буква Я.txt.

В этом окне вы увидите, что размер файла Буква Я.txt равен одному байту. Значит, для хранения одного символа требуется один байт. Заметим, что реально занимаемый файлом объем на диске обычно больше размера документа, т. к. под хранение документов место выделяется не точно равное размеру документа, а объёмами, кратными размеру кластера.

Кластер — минимальный, объём дискового пространства, который может быть выделен для размещения файла. Все файловые системы, используемые Windows для работы с жёсткими дисками, основаны на кластерах, которые состоят из одного или нескольких смежных секторов (512 байт). Чем меньше размер кластера, тем более эффективно используется дисковая память. Размер кластера определяется, как правило, автоматически при форматировании винчестера в зависимости от ёмкости диска и составляет от 512 байт до 64 Кб.

Проведём аналогию: отправляясь на отдых, вы не можете взять с собой в дорогу половину чемодана. Даже если у вас набирается вещей на полчемодана, то вы всё равно вынуждены брать с собой целый чемодан. Если же вещей наберётся больше, чем чемодан, то вам придётся взять с собой два чемодана, но никак не полтора чемодана. Так и для хранения файла отводится место, кратное кластеру.

В нашем примере для хранения одной буквы требуется один байт, а выделяется кластер — 4 килобайта. Такой же объём будет выделен и для хранения любого количества букв от одной до 4 096. Если же размер вашего текстового документа превысит кластер (4 096 байт), но будет меньше двух кластеров (8 192 байт), то для сохранения файла потребуется два кластера, или 8 килобайт.

Замечание 1. Если вы используете шрифты Юникод (Unicode), то для хранения одного символа требуется два байта.

Юникод — стандарт кодировки знаков, разработанный организацией Unicode Consortium, который позволяет представить знаки практически всех национальных алфавитов.

Замечание 2. Если вы создадите в MS Word документ, в котором будет храниться одна буква «Я», то размер его будет значительно больше, чем один байт. Это связано с тем, что, кроме введённого текста, Word сохраняет и форматирование символа, абзаца и документа целиком. Таким образом, в файл записывается дополнительная служебная информация, что и приводит к увеличению размера файла по сравнению с размером введённого текста.

Размер папки на диске складывается из размеров вложенных в папку файлов.

Заключение

Для чего нам нужна эта информация? Вы узнали, на каком языке «разговаривает» ваш персональный компьютер и можно переходить к следующему шагу – изучать, как он устроен «внутри» и знакомится вплотную с одним из языков программирования.

Зная, что такое «разрядность» вы теперь имеете представление о том, что чем больше разрядность цифровой системы, тем, как правило, она быстрее будет справляться со своими задачами.

Понятие о скорости передачи данных поможет вам определить реальную пропускную способность вашего канала для доступа в интернет и без труда «прикинуть» — сколько времени у вас уйдёт на закачку данных.

ХОТИТЕ СКАЗАТЬ СПАСИБО? ⇒ Поделитесь статьей

ХОТИТЕ СКАЗАТЬ БОЛЬШОЕ СПАСИБО? ⇒ Поддержите наш проект

В нашей жизни каждый из нас что-то измеряет. Например, в детстве, наши родители измеряли нам высоту нашего тела. Это ведь так увлекательно, когда узнаешь, что всего за один год ты вырос на целых 5 сантиметров! Для этих целей мы использовали линейку и дверной косяк, помечая на нём ежегодно зарубками высоту.

Каждое измерение требует своего прибора и своей единицы измерения.

Так, масса какого-либо тела измеряется весами в килограммах, время при помощи часов в секундах и т.д.

У начинающих изучать информатику, сам собой, возникает вопрос о том, в каких единицах измерять информацию?

Наименьшая единица измерения информации

Для измерения информации в информатике используют свою, особенную единицу измерения. Она получила название — «бит» и образована от словосочетания двух английских слов — «binary digit».

Для того чтобы была возможность измерить информацию необходимо, как вы помните, закодировать информацию в цифровые двоичные данные. Только так, мы сможем узнать размер набора цифровых данных, хранящемся в каком-либо файле.

Бит — наименьшая единица измерения информации.

Это определение означает, что не существует никакой другой единицы измерения информации, которая была бы меньше, по своему значению, чем один бит.

Один бит содержит в себе очень малую часть информации. Ведь он способен принимать только одно из двух определенных значений (1 или 0).

Поэтому, измерять информацию, используя лишь одни биты, крайне неудобно — числа выходят очень большими. Это тоже самое, если бы мы измеряли высоту своего тела в миллиметрах.

Например, для кодирования 1 символа в текст достаточно 8 бит. 8 бит называют байтом.

Крупные единицы измерения информации

В связи с этим, в информатике были придуманы более крупные единицы измерения информации, связь между которыми отражена ниже:

Существуют и более крупные единицы информации:

  • 1 Пб =1024 Тб Петабайт (Пбайт)
  • 1 Эб =1024 Пб Эксабайт (Эбайт)
  • 1 Зб =1024 Эб Зеттабайт (Збайт)
  • 1 Йб =1024 Зб Йоттабайт (Йбайт)

Приведем примеры для сравнения разных объёмов оцифрованной текстовой информации.

Один байт занимает символ, введённый нами с клавиатуры.

100 Кбайт занимает снимок в телефоне с низким разрешением.

1 Мбайт — небольшая художественная книга.

Три гигабайт всего лишь 1 час видеозаписи в хорошем качестве.

Один гигабайт текста способен прочитать человек за всю свою жизнь.

Информационный объём текстового сообщения

Как найти, к примеру, информационный объём сообщения «Информатика – главная наука современности».
Для этого нужно сосчитать общее количество символов в сообщении (заключено в кавычках), учитывая пробелы между словами (пробел в компьютере тоже символ). Итого, получаем 41 символов или 41 байт.

Предлагаем узнать, сколько информации находится в книге из 100 страниц, если на каждой странице умещается 50 строк, а на каждой строке — 60 символов.
100⋅50⋅60=300 000 символов, что составляет 300 000 байт. Переведём всё в килобайты: 300 000 байт /1024=292,97 Кб. В мегабайтах это будет уже 292,97 Кб /1024=0,29 Мб.

Информационный объём мультимедийной информации

Гораздо больше информации включают в себя файлы графических изображений, а ещё больше — видеофайлы.

Мультимедийной информацией называют данные, которые содержат рисунки, фотографии, звук и видео.

К примеру, растровый рисунок, состоит из 1000 на 1000 пикселей.

Каждый пиксель может быть закодирован 24 битами или 3 байтами (так как 24/8=3) и занимает информационный объём равный 1000⋅1000⋅3=3 000 000 байт.

В килобайтах это уже будет 3 000 000 байт/1024= 2929,69 Кбайт. А в мегабайтах — 2929,69 Кбайт /1024=2,86 Мбайт.

В связи с этим, промышленность выпускает большие по объему носители цифровых данных.

Объём современных цифровых носителей (жёстких или твердотельных дисков), уже достигает объёма нескольких терабайт.

Прописная кириллическая буква «М»
в кодировке ISO 8859-5 кодируется 8 битами 10111100 <displaystyle 10111100>

Бит (русское обозначение: бит; международное: bit; от англ. binary digit — двоичное число; также игра слов: англ. bit — кусочек, частица) — единица измерения количества информации. 1 бит информации — символ или сигнал, который может принимать два значения: включено или выключено, да или нет, высокий или низкий, заряженный или незаряженный; в двоичной системе исчисления это 1 (единица) или 0 (ноль).

В Российской Федерации обозначения бита, а также правила его применения и написания установлены «Положением о единицах величин, допускаемых к применению». В соответствии с данным положением бит относится к числу внесистемных единиц величин с областью применения «информационные технологии, связь» и неограниченным сроком действия [1] . Ранее обозначения бита устанавливались также в ГОСТ 8.417-2002 [2] . Для образования кратных единиц применяется с приставками СИ и с двоичными приставками.

Содержание

История [ править | править код ]

  • В 1703 году в работе «Объяснение двоичной арифметики» [3]Лейбниц пишет, что двоичная система счисления была описана китайским королём (императором) и философом по имени Фу Си, который жил более, чем за 4000 лет до Лейбница. Краткого современного англосаксонского [прояснить] названия китайский Liangyi (инь-ян («0»-«1»), китайский двоичный разряд, китайский бит) в то время пока ещё не имел. Китайский двубит — «сы-сян», образующий четыре диграммы, и китайский трибит — «ба-гуа», образующий восемь преднебесных и посленебесных триграмм, в современной англосаксонской [прояснить] терминологии собственных названий до сих пор не имеют.
  • В 1948 году Клод Шеннон впервые использовал слово «bit» для обозначения наименьшей единицы количества информации в статье «Математическая теория связи». Происхождение этого слова он приписывал Джону Тьюки, использовавшему сокращение «bit» вместо слов «binary digit» в заметке лаборатории Белла от 9 января 1947 года.

Определения и свойства [ править | править код ]

В зависимости от области применения (математика, электроника, цифровая техника, вычислительная техника, теория информации и др.), бит может определяться следующими способами:

1.1. Бит — это один разряд двоичного кода (двоичная цифра). Может принимать только два взаимоисключающих значения: «да» или «нет», «1» или «0», «включено» или «выключено», и т. п.

1.2. Соответствует одному числовому разряду в двоичной системе счисления, принимающему значение «0» или «1» («ложь» или «истина») [4] .

2.1. Одному биту (одному двоичному разряду) соответствует один двоичный триггер (триггер, имеющий два взаимоисключающих возможных устойчивых состояния) или один разряд двоичной памяти.

Для перехода от количества возможных состояний (возможных значений) к количеству бит можно воспользоваться формулой

log 2 ⁡ ( m <displaystyle log _<2>(m> [возможных состояний] ) <displaystyle )> = n <displaystyle =n> [битов].

Следовательно, для одного двоичного разряда (триггера)

Для перехода от количества битов к количеству возможных состояний (возможных значений) можно воспользоваться формулой

I = log 2 ⁡ N = n log 2 ⁡ m , <displaystyle I=log _<2>N=nlog _<2>m,>

I <displaystyle I> — количество информации, бит; N = m n <displaystyle N=m^> — возможное количество различных сообщений (количество возможных состояний n-разрядного регистра), шт; m <displaystyle m> — количество букв в алфавите (количество возможных состояний одного разряда (триггера) регистра, в двоичной системе равно 2 («0» и «1»)), шт; n <displaystyle n> — количество букв в сообщении (количество разрядов (триггеров) в регистре), шт.

Применяется для измерения объёмов запоминающих устройств и объёмов цифровых данных.

3.1. Бит — базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода; см. информационная энтропия. Это тождественно количеству информации в ответе на вопрос, допускающий ответ «да» или «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос).

3.2. Один бит равен количеству информации, получаемой в результате осуществления одного из двух равновероятных событий [5] .

3.3. Бит — двоичный логарифм вероятности равновероятных событий или сумма произведений вероятности на двоичный логарифм вероятности при равновероятных событиях; см. информационная энтропия.

Применяется для измерения информационной энтропии. Отличается от бита для измерения объёмов запоминающих устройств и объёмов цифровых данных, так как большой по объёму массив данных может иметь очень малую информационную энтропию, то есть энтропийно может быть почти пустым.

Физические реализации [ править | править код ]

В цифровой технике бит (один двоичный разряд) реализуется триггером или одним двоичным разрядом памяти.

Возможны две физические (в частности электронные) реализации бита (одного двоичного разряда):

  1. однофазный («однопроводный») бит (двоичный разряд). Используется один выход двоичного триггера. Нулевой уровень обозначает либо сигнал логического «0», либо неисправность схемы. Высокий уровень обозначает либо сигнал логической «1», либо исправность схемы. Дешевле двухфазной реализации, но менее надёжен;
  2. двухфазный (парафазный, «двухпроводный») бит (двоичный разряд). Используются оба выхода двоичного триггера. При исправной схеме один из двух уровней высокий, другой — низкий. Неисправность схемы опознаётся либо высоким уровнем на обоих проводах (на обеих фазах), либо низким уровнем на обоих проводах (на обеих фазах). Дороже однофазной реализации, но более надёжен.

В вычислительной технике и сетях передачи данных значения «0» и «1» обычно передаются различными уровнями либо напряжения, либо тока. Например, в микросхемах на основе транзисторно-транзисторной логики значение «0» представляется напряжением в диапазоне от +0 до +0,8 В, а значение «1» — напряжением в диапазоне от +2,4 до +5,0 В.

Обозначения [ править | править код ]

В вычислительной технике, особенно в документации и стандартах, слово «бит» часто применяется в значении «двоичный разряд». Например: старший бит — старший двоичный разряд байта или слова.

Использование прописной буквы «Б» для обозначения байта соответствует требованиям ГОСТ и позволяет избежать путаницы между сокращениями от «байт» и «бит». Однако, следует учитывать, что в стандарте нет сокращения для «бит», поэтому использование записи «Гб» как синонима для «Гбит» неверно.

В международном стандарте МЭК (IEC) 60027-2 2005 года [6] для применения в электротехнической и электронной областях рекомендуются обозначения:

  • «bit» для обозначения бита;
  • «o» или «B» для обозначения октета или байта. «о» — единственное указанное обозначение во французском языке.

Аналогом бита в квантовых компьютерах является кубит (q-бит; «q» от англ. quantum , квант).

Двоичные логарифмы других оснований [ править | править код ]

Замена логарифмируемого числа с 2 на e, 3, 4, 8, 10, 16, 27 и др. приводит соответственно к битовым (двоичным) эквивалентам редко употребляемых единиц нат, трит, тетрит (tetrittetral digit) (двубит), октит (octitoctal digit) (трибит), Харт (дит (ditdecimal digit), бан, децит (decitdecimal digit)), ниббл (гексадецит, четырёхбит), гептакозаит и др., равных соответственно:

1 nat = log 2 ⁡ e = 1 , 44. <displaystyle 1 < ext>=log _<2>e=1,44. > бита, 1 trit = log 2 ⁡ 3 = 1 , 58. <displaystyle 1 < ext>=log _<2>3=1,58. > бита, 1 двубит = 1 tetrit = log 2 ⁡ 4 = 2 <displaystyle 1 < ext>=log _<2>4=2> бита, 1 трибит = 1 octit = log 2 ⁡ 8 = 3 <displaystyle 1 < ext>=log _<2>8=3> бита, 1 hart ( dit, ban, decit ) = log 2 ⁡ 10 = 3 , 32. <displaystyle 1 < ext> (< ext>)=log _<2>10=3,32. > бита, 1 четырёхбит = 1 nibble ( hexadecit ) = log 2 ⁡ 16 = 4 <displaystyle 1 < ext> (< ext>)=log _<2>16=4> бита, 1 heptacosait = log 2 ⁡ 27 = 4 , 75. <displaystyle 1 < ext>=log _<2>27=4,75. > бита.

Оцените статью
Добавить комментарий